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In this paper, Remora Optimization Algorithm (ROA) is proposed, which is a new bionics-based, natural-inspired,
and meta-heuristic algorithm. The inspiration for ROA is mainly due to the parasitic behavior of remora. Different
locations are updated in different hosts: In some large hosts, remora feeds on the host’s ectoparasites or wreckage
and evades natural enemies, for example in the case of giant whales. In some small hosts, remora follows the host
to move to the bait-rich area to prey, taking the fast-moving swordfish as an example. In the case of these two
update methods, remora also makes some judges based on experience. If it takes the initiative to prey, it updates
the host, makes a global update. If it eat around the host, remora does not change the host, and continues to local
update. This algorithm is more inclined to provide a new idea for memetic algorithm, because the host in ROA
can be reasonably replaced, such as ships, turtles, etc. The above dynamic mode and behavior are simulated
mathematically and the validity of the ROA is tested with 29 benchmark questions and 5 actual engineering
questions. Parallel comparisons are made with 10 other natural heuristics. The statistical results and comparisons
show that ROA provides a very promising prospect and a strong competitive ability compared to other state-of-
the-art heuristic techniques.

1. Introduction

With the increase of data volume, the innovation of computer tech-
nology and the advancement of computing power, the emerging artifi-
cial intelligence has been reshaping our lives (Haeberle et al., 2019;
Hossam et al., 2019). During the third industrial revolution-the com-
puter technology revolution, the big data can be in analogy with steam
and electricity, which are important energy sources to promote indus-
trial progress. Now people have entered the era of Fourth Industrial
Revolution. As a technology that can ignite these energy sources,
intelligent optimization algorithm has become the “important founda-
tion” of machine learning, the “important weapon” to solve the current
complex optimization problems, or the “important engine” of the Fourth
Industrial Revolution (Maximilian, Can, Tamara, & etc., 2019; Yuan-
kang, Ziyang, Zhiqiu, & etc., 2010).

In essence, optimization belongs to “operations research”. Opera-
tions research includes many familiar branches, such as robust optimi-
zation, multi-objective optimization, heuristic algorithm, etc. The
heuristic algorithm depends on the technology of the problem. It may
give its feasible solution in an acceptable time and space, but it does not

* Corresponding authors.

guarantee to get the optimal solution. Because they are often too greedy,
they usually fall into the local optimal state, they usually can not reach
the global optimal. However, heuristic strategy provides an efficient
way to obtain feasible solutions when the search for the optimal solution
becomes impossible or difficult to complete. To adapt to a wide range of
problems, the meta-heuristic algorithm is proposed as a black box.
“Meta” is actually a philosophical concept, expressing the organizational
unit of the world. Therefore, meta-heuristic algorithm can be treated as a
basic method, independent of the existence of the problem. If necessary,
some fine-tuning of its internal parameters will be able to adapt to the
problems at hand. Nevertheless, occasionally, meta-heuristic algorithms
show strong sensitivity to adjusting these user-defined parameters
(Amir, Xin-She, & Siamak, 2013). Because of their simplicity and wide
applicability, many algorithms, such as particle swarm optimization
(PSO) (James & Russell, 1995), polar bear optimization algorithm (PBO)
(Dawid & Marcin, 2017) and Red Fox Optimization Algorithm (RFO)
(Dawid & Marcin, 2021) have been proposed successively. Corre-
spondingly, there are many application scenarios in the field of engi-
neering: Jaya algorithm has been used to optimize the quality of top
beam structures with natural frequency constraints, to optimize the
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Fig. 1. The classification of meta-heuristic algorithms.

Fig. 2. The individual remora.

Fig. 3. Remora parasitizes on different hosts.

design of reinforced concrete retaining walls and to optimize the size of
cable and prestress of cable-stayed Bridges to minimize the cost.
(Grzywinski & Dede, 2019; Ztiirk, Dede, & Tiirker, 2020, Atmaca, Dede,
& Grzywinski, 2020). Designed a low-weight cantilever reinforced
concrete retaining wall with shear key by using Grey wolf optimization
algorithm (GWO) (Kalemci, Ikizler, Dede, & Angin, 2020). Thus, it is
proved that, it has been entered the blowout period of meta-heuristic
algorithm. To date, there are many types of meta-heuristic algorithms.
As shown in Fig. 1.

1. The traditional categorization is classified based on a single solution
(such as simulated annealing (SA) (Scott, Gelatt, & Mario, 1983))
and population (such as genetic algorithm (GA) (John, 1992; El-
Ghazal, 2009). Standing in the general direction of data process-
ing, the main basis is the number of solutions processed in the

iterative optimization phase. Among them, population-based meta-
heuristics mostly imitate natural phenomena (Jia, Lang, Oliva, &
etc., 2019; Mingjing, Huiling, Bo, & etc., 2017; Liming, Huiling, Zhe,
& ete., 2016; Zhang, Huiling, Jie, & etc., 2018), which are easy to
develop and have achieved remarkable results.

. A more fine-grained classification method is to classify the meta-

heuristic algorithm according to the source of inspiration, that is, to
select the object of modeling: evolutionary algorithm (such as ge-
netic algorithm (GA) (John, 1994)), based on physics (for instance,
harmony search (HS) (Kang & Zong, 2004), based on human (such as
teaching-based optimization (TLBO) (Rao, Savsani, & Vakharia,
2012)) and swarm intelligence algorithm (for example, ant colony
optimization (ACO) (Marco, Vittorio, & Alberto, 1996)). This clas-
sification is intuitional. As the literal meaning indicates, they are
either inspired by the laws of biological evolution, or imitate the laws
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WOA Strategy Host feeding

Fig. 4. The different states of remora.

Fig. 5. The Host feeding model under on condition that C = 0.1.

Table 1

Mean ranks of convergence factor C.
C 0 0.1 0.2 0.3 0.4
Mean ranks 2.8000 1.7500 2.9000 3.4250 4.1250

of physics in the world, or learn the intelligent models among bio-
logical populations, or are based on human technology and the laws
between them.

3. The third most proposed classification method is relatively novel.
Trajectory methods: the main idea is to track a single search agent’s
trajectory, to avoid local optimization by moving a poor solution,
taking the tabu search algorithm (TS) as an example (Fred, 1989);
Population Based: using a group of search agents for optimization,
these methods are suitable for the improvement of the exploration
stage, the ant colony optimization algorithm (ACO) is taken as an
example; Multiple neighborhood: using multiple neighborhood
structures in the algorithm as the distinction, local and global opti-
mum are realized by switching between neighborhoods, the appro-
priate method of segment is the mutation in the genetic algorithm
(GA); Memory Usage: the relevant algorithm contains a valid

memory function, which can preserve the local optimum and the
global optimal in memory. A solution that provides a reference for
future optimization, taking PSO as an example.

In practical terms, different classification methods can not only
facilitate the understanding and learning of optimization algorithms.
Furthermore, it also provides reference and theoretical support for
improving the fusion of algorithms. Existing optimizers can be divided
into two stages in search steps: exploration (diversification) and
exploitation (enhancement) (Esmat, Hossein, & Saeid, 2009). In the
exploration stage, the more random the algorithm provides, the better it
is to explore the regions and boundaries of the feature space in depth.
Without randomness, it will fall into local optimum. In order to obtain a
higher probability to find the optimal solution, there must be enough
randomness to be introduced by the algorithm. Specifically, it has better
robustness and diversity in the search process. The randomness can be
considered in every step of the algorithm, but the probability must be
well controlled (Heidari et al., 2019). The exploitation stage usually
takes place after the exploration stage. At this stage, the optimization
program will pay more attention to finding a better solution. Usually, an
effective exploration can avoid falling into local optimum, leading to an
improved performance; Efficacious development can reduce the imma-
ture convergence defects and hopefully bring a qualitative improvement
to the algorithm. The balance between the two will bring a qualitative
leap. A well-organized optimizer can achieve a reasonable and fine
balance between exploration and development trends. As increasing
new algorithms and hybrid algorithms are proposed, the theorem of no-
free lunch (NFL) (David & William, 1997) is more accepted by people. In
theory, there is no algorithm that can be used as a general optimal
optimizer. The average performance of all stochastic algorithms is the
same, and there is likely no stochastic algorithm that can completely
sovle all optimization problems. This determines the application limi-
tation of the specific stochastic algorithm, that is, the algorithm with
certain characteristics can only achieve better performance on a
particular problem.

In order to design and develop a more comprehensive optimization
algorithm, this paper proposes a new meta-heuristic optimization algo-
rithm, the Remora Optimization Algorithms (ROA), which is inspired by
the “intelligent traveler” in the ocean, the remora. Through the idea of
parasitism and random host replacement of remora, a remora-based
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Two dimensional scatter plots of test functions under different convergence factor C.
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sardine populations are updated with elite strategies in each iteration.
Table 3 And it also takes advantage of the rotation attack characteristics of the

Pseudocode for the ROA algorithm.

Initialize the population location R;(i = 1,2, ---n) and memory location Ryy;

Initialize the optimal solutionRg.s and corresponding optimal fitness f(Rpest);

While t < Max_iter do

Calculat the fitness function value of each remora;

Check if any search agent goes beyond the search space and amend it;

Update a,a and V;

For each remora indexed by i do

If H(i) = 0 then

Using Eq. (5) to update the position of attached whales;

Elseif H(i) = 1 then

Using Eq. (1) to update the position of attached Sailfishes;

Endif

Make a one-step prediction by Eq. (2);

Determine the value of H(i) by Egs. (3) and (4) to juge whether host replacement is
necessary;

If the host is not replaced, Eq. (9) is used as the host feeding mode for remora;

End for

End while

framework was created. It can learn the effective characteristics of the
host. In this paper, whale optimization algorithm (WOA) (Seyedali &
Andrew, 2016) and swordfish optimization algorithm (SFO) (Shad-
ravan, Naji, & Bardsiri, 2019) are taken as examples. They are recog-
nized as effective algorithms and relatively new algorithms,
respectively. Based on their effective position update formula, the main
research object of this paper is constructed. WOA is a typical whale
optimization algorithm which was proposed by Mirjalili in 2016. The
superiority of the algorithm has been validated by numerous application
scenarios, and a variety of variants have been developed. SFO was
proposed by S. Shadravan etc. in 2019 whose main inspiration of the
SFO algorithm is based on the attack-alternation strategy of sailfish’s
group hunting. Similar to all the other group hunting algorithms, sailfish
are also updated according to the target. Interestingly, swordfish and

swordfish population.

A novel algorithmic fusion framework is established by switching
between remora and two kinds of hosts. The framework contains two
movement modes corresponding to the exploration and exploitation
stages respectively. Mode switching is achieved through a self-built “one
small step try”. “Remora factor” is put forward in the exploration stage,
which can improve the precision of optimization and result in effectively
convergence. The establishment of these effective mechanisms makes
ROA achieve promising results in the research outcomes. In order to
explain the overall optimization capability of ROA in more detail, some
significant points are as follows:

o The formulas in ROA involving SFO and WOA were improved on the
original form, and a formula which was more suitable for the
movement of remora was obtained.

By simulating the whole process of remora’s predation, the explo-
ration and exploitation were divided into two processes: “Free
travel” and “Eat thoughtfully”, and the “experience” of remora was
taken as the main basis for the judgment of phase switching.

“Free travel” is further divided into “SFO Strategy” and “Experiment
attack” global optimization methods, which correspond to “big
global” and “small global” respectively in the algorithm. Besides,
“Experiment attack” is the main way for remora to accumulate
experience.

“Eat thoughtfully” is further divided into two feeding modes which
are “WOA Strategy” and “Host feeding”. Different convergence
methods enhance the stability of the algorithm.

The “SFO Strategy” and “WOA Strategy” in the whole algorithm
framework can be reasonably replaced by other algorithms. There-
fore, a more important highlight of this paper is to provide a
framework for memetic algorithm (Talbi, 2002).
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Fig. 6. The flow chart of ROA.
Section 4, the research aspects of solving practical engineering problems
Ta]?le 4 . with different benchmarks are discussed and analyzed. Finally, this
Unimodal benchmark functions. . . .
paper summarizes the work and describes the perspective of future
Function Dim Range Smin developrnent.
Fi(x) = Yif 30 [-100, 100] 0 N .
Fal) = S bei] + [T bl 30 [-10, 10] 0 2. Remora Optimization Algorithm (ROA)
2 = i=1 1% i=1 14X 1Y
n i 2 30 [-100, 100] 0
F3(x) = >0, (Zj—lxj) 2.1. Inspiration
Fa(x) = maxd\{ |xi],1 <i<n\} 30 [—100, 100] 0
Fs(x) = 30} [100(xi+1 — 2+ (i — 1)2] 30 [-30, 30] 0 Remora, suckerfish, diskfish, and sucker are some of the names
Fo(x) = 0, ([ + 0.5] ) 30 [-100, 100] 0 describing eight species of marine fishes in the Family Echeneidae
Fr(x) = S, ix? + random[0, 1) 30 [~1.28, 1.28] 0 (Fischer, Fao, & FIR, 1978; Nelson, Crossman, & Espinosapérez, 2006).
Function Dim Range Frn Remora has a extremely prolonged body, the head is flat, and gradually
Fi(x) = Y0, 30 [-100, 100] 0 becomes cylindrical backward. At the top, there are suckers deformed
Fa) = Z; I;'\ T bl 30 [_10, 10] 0 from the first dorsal fin. Its fins split from the center of the sucker to both
= ) ':21 30 [-100, 100] 0 sides, forming about 21-28 fin flaps (laminae) (Ralf & Johnson, 2012).
Fs(x) =X (Zf 1"]’) ’ Remora’s more detailed body features can be found in reference (Fertl &
Fa(x) = mad\{ x|,1 <i<n\} 30 [—100, 100] 0 Landry, 1999). As shown in Fig. 2.
Fs(x) = Y0 [IOO(xm —2 (- 1)2] 30 (=30, 30] 0 Remora is famous for its ability to swim on whales or other marine
Fo(x) = Y0, (b + 0.5])? 30 [-100, 100] 0 animals or oceangoing hulls. This habit not only labor-saving but also
Fy(x) = Y ix} + random[0,1) 30 [-1.28, 1.28] 0 free from the enemy’s invasion. Usually it distributed in tropical waters,

e “Host feeding” creates a solution area that converges gradually
around the host, which refines and enhances the ability of local
optimization. Innovative remora factor is proposed, which perfectly
expresses the position of remora on the host vividly. The purpose of
distinguishing the locations of remora and its host was achieved.

The overall structure of this paper is as follows: Section 2 describes
the remora optimization algorithm, including the source of inspiration
and mathematical modeling of various strategies. In Section 3, the
experimental results of the test function are introduced and discussed. In

but it also follow the movement of the host to the cold waters. Remora
mainly feeds on other fish or invertebrates. When it reaches the sea area
rich in bait, it will leave the host, ingest food, and then adsorb to the new
host and continue to transfer to another sea area. But in some cases, just
like a cleaner, it is also possible to eat the wreckage food or ectoparasites
outside the carrier (Cressey & Lachner, 1970; Williams, Mignucci-
Giannoni, & Bunkley-Williams, 2003). The host varies greatly. Whales,
sharks, sea turtles, sunfish, swordfish, and boats can all be boarding
objects, even with divers (Bruce, 2002). Seen in Fig. 3.

How does remora attach itself to swordfish or whale? It turns out that
whenever a remora sees a swordfish or a big shark passing by, it
immediately swims forward, and hold its body tightly to them. The
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Table 5
Multimodal benchmark functions.
Function Dim Range Smin
Fg(x) = Y0, — xisin(y/X7) 30 [-5.12, 5.12] 0
Fo(x) = Y iy [x? — 10cos(27x;) +10] 30 [-5.12, 5.12] 0
I ———  J— 30 [-32, 32] 0
Fio(x) = —20exp| — 0.2 ;mei —exp Hz:',ilcos(zﬂxf) +20 +e
1 no o n X; 30 [-600, 600] 0
Fu(x) = WZi:lxi *Huﬂoj(% +1
. n- 2 . 2 n —
Fia(x) = H\{ 10sin(my;) + Zi:l -1+ 1051712()‘[)/“1) +(-1)3+ Zizlu(xi, 10,100,4) 30 [-50, 50] 0
k(x; — a)™ X >a
i+ 1
yi:1+x'+ u(xi,a,k,m) = 0 —a<x<a
k(-xi—a™ xi<a
Fia(x) = 0.1\{ sin®(3mx1) + Y14 (x — 1)*[1 + sin®(3mx; + 1) ] + (xa — 1)*[1 + sin?(2ax,) \} -+ Y, u(x;, 5,100, 4) 30 [-50, 501 0
Table 6
Fixed-dimenstion multimodal benchmark functions.
Function Dim Range Smin
-1 2 [-65, 65] 1
1 25 1 5
S
%00 ) 4 5,5 0.0003
a X1 (bl2 +bixz) [-5, 5] .
Fis(x) = 2is |G~ o
bi + bixs + x4
1 - —1.
Fig(x) = 4x} —2.1x} + §x§ + x1%2 —4x3 + 4x} 2 (=5, 5] 1.0316
1 2 1 2 [-5, 5] 0.398
Fi7(x) = (x2 75—)@ +§x1 —6) +10(1——)cosx; + 10
4p p 8p
Fig(x) = [1 40t + x5+ 1)2(19 — 14x; + 32 — 14x, +6x1x2+3x§)] 2 [-2,2] 3
x[30 4+ (2x1 — 3x2)” x (18 = 321 + 125 + 48xz — 36x1; + 273 |
2 3 [1, 3] —3.86
Fro(x) = —Zf,lciexp - st—lanj (Xj - pij)
2 6 [0, 1] -3.32
Fao(x) = =X ciexp( — X0, ay (Xj - Pu)
1 4 0, 10 —10.1532
Fa(x) = ~X8, [(X - a)(X ~a)" +a [0, 101
-1 4 0, 10 —10.4028
Fa() = 57 [(X - a)(X —a)" +a [0, 101
-1 4 0, 10 -10.5363
Fao(x) = ~S0% [(X - a)(X —a)" +c [0, 101
Table 7
Composition benchmark functions.
Function Dim Range Smin
F24(C16) f1,f2,f3, ..., f10= Sphere Function [61, 02,03, ...,010] = [1,1,1,...,1][41, 42,43, ..., 410] = [5/100,5/100,5/100, ...,5/100] 30 [-5, 0
5]
Fos(C18)f1,f2,f3, ..., f1o = Griewank's  Function[61,62,63, ...,010] = [1,1,1,...,1][41,42, 43, ..., 410] = [5/100,5/100,5/100, ...,5/100] 30 [-5, Y
5]
Fas(C19)f1,f2,f3, ..., f10 = Griewank's  Function[o1,62,63, ...,010] = [1, 1,1,...,1][A1, 42,43, ..., 410) = [1,1,1,...,1] 30 [=5, 0
5]
_ g ) — Rastriein’s ; — Weierstrass ; 30 [-5 0
F. 9 f1,f2= Ackley s Functlon,fg,f4 Rastrigin s Function,f5.fe= Weierstrass Function, P —M111..1 A _ s
2(C20) f7,fg= Griewank s Function,fg, f10= Sphere Function [01,02,03,-s010] = [1L,1,1,.. ][, A2, 43, -oos o] 5]
[5/32,5/32,1,1,5/0.5,5/100,5/100,5/100,5/100]
fo= Rastrigin's Function,fs3, f4= Weierstrass Function,fs, fo= Griewanks Function 30 [-5, 0
F. 21 fi.f2 g 13,14 RETR) ) —
25(C21) f7,fs= Ackley s Function,fg, f1o= Sphere Function [01,02,03, .., 610] 5]
[1.1,1,...,1)[1, 22, 23, ..., 410] = [1/5.1/5,5/0.5,5/0.5,5/100,5/100,5/32,5/32,5/100,5/100]
fi,fa= Rastrigin's Function,f3, f4= Weierstrass Function,fs, fo= Griewank s Function, _ 30 [-5, 0
Fa(C25) fr.fg= Ackley's Function,fg, f1o= Sphere Function [01,02,03,..,010] = 5]

[0.1, 0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1] [t

2,43, ..., o] = [0.1%1/5,0.2¥1/5,0.3*5/0.5,0.4%5 /0.5, 0.5*5/100,
0.6%5/100, 0.7%5/32,0.8*5/32,0.9*5/100, 15/100]

membrane and cartilage plates are then immediately raised so that the
water is squeezed out of the sucker. At this point, the part of the sucker
that becomes a vacuum. Enormous pressure of the sea water outside the
suction cup and the many vertical plates on the suction cup increase the
resistance of remora to slip, thus enhancing the friction force that
remain attached to the moving host and remora is firmly fixed. It has
been determined that a 60 cm remora can withstand the pull of 10 kg

(Gudger, 1919).

It is worth mentioning that the “intelligence” of remora has been
applied to many fields, but its whole process from hunting for prey to
eating has rarely utilized. In this algorithm, the two species of sea
creatures allowing remora to be attached to. They are humpback whales
and sailfishes. Normally, humpback whales hunts alone. The most
interesting thing about the humpback whales is their special hunting
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Fig. 7. Demonstration of composition test functions (MM: Multi-modal, R: Rotated, NS: Non-Separable, S: Scalable).

method which called bubble-net feeding method. Sailfish is the fastest
fish in the ocean that can reach maximum speeds of around 100 km/h.
Normally, they hunt in groups. Their special hunting method is take
turns attacking elite tactics. This two special sea creatures can be a
perfect representation of remora’s host. One is a huge body and usually
hunting alone, the other is fast and usually hunting in group. The well-
recognized effect motion formulas of WOA algorithm and the latest
swordfish algorithm are extracted as the motion formulas of remora. As
a “smart” fish, remora’s attack is based on a certain experience. What-
ever whale or swordfish swims, remora always keeps close to them. As a
rule of thumb, if its favorite food is near or it feels too hungry, it rushes

like an arrow and grabs the food in its mouth first. When there is no need
to take too much risk, the leftover food residues of whales and sword-
fishes or their parasites can satisfy remora. In this paper, the above
interesting biological habits are mathematically modeled and the pur-
pose of optimization is achieved.

In the ROA, remora initially did a global movement, the exploration
stage, and named this stage “Free travel”. This stage includes a “big
global” movement, which corresponds to remora adsorbing on the
sailfish, and update the position of the sailfish for long-distance position
update. In addition, there is also a “small global” movement, which is a
one-step attempt to update remora itself in an “Experiment attack”. At
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Table 8 Table 9
Parameters of the compared algorithms. Test function performance indicators.
Reference Algorithm  Parameters Value Category Name Formulation Reference
(Ali et al., 2019) HHO Initial energy Eo (-1,1) Performance Average 5 Zfilﬁme (Oliva
evaluation Operatin Average_Time = =5 et al
Jump strength J 0,2) P 8 al.,
Prey escape probability r 0.5 Time (AT) 2017)
Average N o (Ibrahim
Random parameters 1y, I, '3, T4 [0,1] ﬁtnessg Average_Fitness — Z}\:rlfl ol
(Shadravan et al., SFO Population percentage PP 0.2 functi 201 8)
2019) Prey density PD 0,1) unction
Coefficient]; (-1,1) value (AF)
! ’ Standard (Jia et al.,
Random parameter r 0,1) deviation Std = 2019)
Coefficients of power attack A,e 4, 0.001 (Std) i =
2
\* MERGEFORMAT \/ ﬁZizl (f: — Average)
Number of update sardines Statlstlcal. Wilcoxon’s Rt — Zrank )+ EZrank @) (Derrac
Number of variables of update evaluation Rank-Sum o 2= etal,
sardines test (WT) 1 2011)
(Gaurav & Vijay, EPO Temperature Profile (T) [1, 1000] R = Zfank(di) + EZrank(di)
b - _ di<0 di=0
2018) A Constant 5 51]'5’ Friedman iZn Z ) (Friedman,
: test (FT Fr=a 1 |28 1937
Function S() [0, 1.5] (FT) k(k+1) j ’ )
Parameter M 2 k(k+1)
Parameter f [2,3] 4
Parameter [ [1.5,2]
(Gaurav & Vijay, SOA Movement behavior A [0,2]
2019) Control parameterf, 2 attack). If the host is not changed, remora feeds on the host (Host
Range of parameter k [0,27] feeding).Continue this process until the optimal solution is found. To
Helical parameter u 1 show the above process more vividly, Fig. 4 is drawn. The relevant
Helical parameter v 1 . . .
formulas are introduced in the next section.
Random parameter rd 0,1)
(Dhiman & Kumar, SHO Control Parameter ﬂ' [0,5]
2017) . L .
Constant M [0.5,1] 2.2. Mathematical model and Remora Optimization Algorithm (ROA)
Co-efficient vector B [0,2] . . .
_ 5 In this subsection, the mathematical models of “Free travel”, and
Co-efficient vector E [0,2] « . . .
Eat thoughtfully” are provided. Then the advantages of ROA algorithm
(Seyedali et al., SSA Control Parameter c; 12,718 .
2017) ’ are summarized
Random parameters c5c3 0,1)
(Seyedali & Andrew, ~ WOA S ci e [0,2] .
2016) Coefficient vectors A 2.2.1. Initialization
Y =4 . . . .
Coefficient vectors C .21 In the proposed ROA algorithm, it is assumed that the candidate
Helical parameter b 1 solution is remora, and its position R in the search space is the variable of
) Helical parameter [ [-1,1] the problem. When remora swim in one-dimensional, two-dimensional,
(Seyedali, 2015a) MFO Logarithmic spiral constant b 0.75 h di . 1 di . 1 hei s
Random parameter ¢ [1.1] three- 1men51on.a or super- 1men51ona. .spac.e, their position vector
Convergence Constant r [-1,-2] changes accordingly. The current position is R; = (Ri,Ri2, ", Ria),
(Seyedali et al., MVO Mining capabilityp 1/6 where i represents the number of remora and d represents the dimension
2015) Random parametersry,ra,rars [0,11 in the search space of remora. In the similar way, Rgess = (R}, R3, -+, Ry)
Contrast parameter H 0.5 represents food (target) in biological habits, which also represents the
?}f}f %g'f’]l] optimal solution in the algorithm. In an algorithm, each candidate so-
(Seyedali, Seyed, & GWO Convergence constant a [0.2] lution should have a corresponding ﬁtn.ess function. Herfe it can be
Andrew, 2014) Random parametersr,ry [0,1] expressed as f(R;) = f(Ri1,Ri2, -, Riq). f is the corresponding rule for

the same time, the result of the attempt is an important basis for whether
to change the host. During the exploration phase, remora performs
partial renewal. At this stage, remora gradually converges towards the
target, that is, eat. This stage is named “Eat thoughtfully”. There are two
ways of feeding for remora, that is, to follow a large host to eat or to feed
on parasites on the host. This corresponds to the special “bubble net”
location update mode of WOA and the “Host feeding” in the algorithm,
respectively. In the module of “Host feeding”, a “remora factor” was
created according to the different positions of the other parts of the
whale to improve the accuracy of the optimization. To give an example,
at the beginning of the “Free travel” stage, remora is attached to the
sailfish to do a quick global search for optimization (SFO Strategy),
looking for areas rich in bait (optimum solution). During this period,
remora continues to make a small step to try to prey (Experiment
attack). When the surrounding bait is low, remora randomly chooses
whether to change the host. Then enter the “Eat thoughtfully” stage. If
the host is changed to a whale, remora preys with the whale (WOA
Strategy). During this period, remora continues to try (Experiment

calculating the fitness function value. f(Rpest) = f (R}, R, -+, R};) save the
best fitness value corresponding to the best remora location. Notable,
remora is the main factor to find a solution, and it is scattered in the
search space. Other marine organisms or ships are just tools to assist
remora in location updating, and it has its own way of updating loca-
tions. With these tools, remora can find the best location in the region. In
fact, there are two modes for determining the best position, mainly
based on whether or not to take the initiative to select different modes.

2.2.2. Free travel (Exploration)
o SFO Strategy
When remora attach themselves to the swordfish, its position can be
considered as being updated at the same time. Based on the elite idea of

this algorithm, the formula of its location update was improved and get
the following formula:

R; R
R:.H — R;}{m _ (rand(07 l)f:( Best ; rand) _ R);aud) (1)
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Table 10
Results of benchmark functions (F1 - F13) under different dimension.
Benchmark 30 100 500 1000
F1 AF 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
STD 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F2 AF 2.80E-191 2.72E-183 5.41E-168 4.38E—183
STD 6.07E—161 0.00E + 00 8.15E-160 1.32E-157
F3 AF 1.26E-321 6.79E—305 1.45E—-302 4.40E—285
STD 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F4 AF 3.16E-169 5.12E-167 2.62E-167 3.39E-165
STD 0.00E + 00 1.50E-157 2.86E—-157 4.45E—-162
F5 AF 2.70E + 01 9.81E + 01 4.95E + 02 9.90E + 02
STD 4.61E-01 4.17E-01 2.22E-01 5.65E—-01
F6 AF 3.90E-02 1.35E + 00 1.01E + 01 1.07E + 01
STD 1.30E-01 6.96E—01 5.96E + 00 1.69E + 01
F7 AF 3.55E-04 4.81E—-05 4.41E—-04 4.63E—05
STD 1.54E-04 2.79E—-04 2.22E-04 1.76E—-04
F8 AF —1.26E + 04 —4.12E + 04 —2.09E + 05 —4.04E + 05
STD 1.03E + 03 5.97E + 02 8.20E + 03 1.08E + 04
F9 AF 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
STD 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F10 AF 8.88E—16 8.88E—16 8.88E—16 8.88E—16
STD 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F11 AF 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
STD 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F12 AF 6.93E—-03 2.23E-02 8.92E-03 2.66E—02
STD 6.60E—03 1.13E-02 2.23E-02 2.06E—02
F13 AF 3.16E-01 1.07E + 00 1.17E + 01 1.75E + 01
STD 1.38E-01 9.86E—01 3.64E + 00 9.22E + 00
Table 11
Friedman test for AF of different dimensional benchmark functions (F1-F13).
Standard 30 100 500 1000
FT 1.8654 2.3269 2.7885 3.0192

Here t represents the number of current iterations and T is the
maximum number of iterations. Where R,4,q is a random location. Elite
select remora’s historical optimal position to lead the update. Mean-
while, random selection of remora is added to ensure the exploration of
search space. The selection of remora for different hosts mainly depends
on whether it has eaten prey or not, that is, whether the fitness function
value obtained at present is better than that of the previous generation.
In fact, the current fitness function value is obtained by “Experience
attack”.

e Experience attack

In order to determine whether it is necessary to change the host, the
tuyu needs to continuously make a small step around the host, similar to
the accumulation of experience. When the above ideas are modeled, the
formula is as follows:

Ru =R} + (R: — Rl,m)*randn 2)

Where R, represents the position of the previous generation, which
can be seen as a kind of experient. R, indicates a tentative step. When
remora makes such an active step, it can be regarded as a “small global”
movement, therefore, therandnwas choosed. This mechanism can taking
into account the predictability while effectively jump out of the local
optimum, and has been developed in a wider range of development.
After this step, a step of judgment is required, after which, remora
randomly chooses whether to replace the host or not. The judgment of
this step in the algorithm can be expressed as the comparison between
the fitness function values of the current solution f(R!) and the
attempted solution f(Rg). Take solving the minimum problem as an
example, if the fitness function value obtained by the attempted solution
is smaller than that of the current solution,

10
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F(RY) > f(Rar) 3

Remora then selects a different feeding method for local optimiza-
tion, which is illustrated in the next section. If the fitness function value
of the attempted solution is larger than that of the current solution, then
back to host selection.

F(R) <f(Rax) 4
2.2.3. Eat thoughtfully (Exploitation)
o WOA Strategy

On the basis of the original WOA algorithm, the position updating
formula of remora attached to the whale was extracted. As shown below:

Rii1 = D*e¢"*cos(2ma) + R; (5)

a = rand(0,1)*(a—1)+1 (6)
t

a=—(1+ ) @)

D= |RBe.u 7R1‘ (8)

In a larger solution space, when a remora is on a whale, their posi-
tions can be regarded as the same. Where D is the distance between
hunter and prey (current optimal solution),ezis a random number in
[—1,1], and a goes down linearly between [ — 2, —1].

e Host feeding

Host feeding is a further subdivision in the exploitation process. At
this stage the solution space can be reduced to the location space of the
host. Moving on or around the host can be thought of as small steps,
which can be mathematical modeled as:

RI=R +A ©

A = B*(R, — C*Rpeyr) (10)

B = 2*V*rand(0,1) -V an
(1"

V=2 (1 Maxjter) 12

Here A was used to denote a small step of movement which is related
to the volume space of the host and remora. In order to distinguish the
location of the host and remora in the solution space, a remora factor C
was used to narrow the position of remora. Suppose that the volume of
the host is 1, then the volume of remora is approximately a fraction of
that of the host. The Fig. 5 show the “Host feeding” model under on
condition thatC = 0.1. In order to determine the value of C, the remora
factor is taken as the following five values, 0, 0.1, 0.2, 0.3, 0.4. Under the
conditions of different remora factors, two functions are selected from
three test functions, each of which runs 30 times independently. Fried-
man test is used to rank the integrity of ROA optimization algorithms
with different remora factors. The evaluation criteria include fitness
function value, standard deviation of 30 optimal fitness function value,
30 average running time and 30 standard deviation of running time. As
can be seen from Table 1, when C is taken as 0.1, the best effect can be
obtained. Meanwhile, Table 2 also gives the two-dimensional scatter
diagram of the test function under different remora factor C.

The experiment proves that the effect is better when the value range
of Cis[0, 0.3]. Above 0.3, the overall effect is not good enough. Further, it
is biologically understood that remora has the greatest ability to eat and
avoid predators when its exploratory motility is one-tenth the size of its
host. Thereby achieving more refined optimization though the Host
feeding. Since the volume of the host is random, use B to simulate a
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Table 12
Results of benchmark functions (F1 - F13) under 30 dimension.
Benchmark ROA HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO
F1 AF 0.00E + 1.34E-10 1.52E-03 1.37E + 3.27E-03 3.17E-14 9.15E—10 1.78E-75 3.56E—-14 2.11E-50 1.61E-61
00 01
STD 0.00E + 00 1.38E-93 4.06E—02 3.13E + 5.04E—02 0.00E + 00 2.50E-10 2.27E—-69 1.90E-13 0.00E + 00 9.25E-57
00
F2  AF  0.00E + 7.86E-51 5.89E-02  4.07E-24  7.66E-04  5.06E—24 7.02E-06  3.44E-51 9.23E-09  1.61E-61 6.30E—33
00
STD 0.00E + 00 6.33E-51 5.40E—02 1.78E—07 1.65E-02 0.00E + 00 1.09E-05 1.33E-50 1.04E-08 0.00E + 00 1.01E-32
F3  AF  0.00E + 1.97E-11 4.11E-04  1.04E + 3.46E + 02 9.00E+ 00 2.17E-07  221E+02 1.01E-02  4.24E-50  1.24E-25
00 04
STD 0.00E + 00 6.49E—-85 7.34E-02 1.24E + 1.57E + 05 3.29E + 01 6.95E—08 2.32E + 02 2.11E + 0.00E + 00 1.55E—24
03 03
F4 AF 0.00E + 1.02E-49 4.77E—-02 3.72E + 8.57E-01 3.00E + 00 1.81E-05 2.30E + 00 6.26E—02 6.66E—14 6.73E—-19
00 01
STD 0.00E + 00 3.38E—-49 1.41E-01 1.55E + 1.20E + 00 1.51E + 00 2.27E-05 1.97E + 01 3.02E + 0.00E + 00 3.83E-18
01 00
F5 AF 6.56E + 00 8.47E—-05 9.03E + 9.24E + 2.79E + 00 9.00E + 00 9.46E + 00 8.71E + 00 2.41E + 3.19E + 02 6.25E + 00
00 03 02
STD  9.94E + 01  1.14E-02 3.28E + 4.93E + 7.64E+ 08 285E+00 1.50E+02 6.27E-01 1.26E + 4.53E-01 6.44E-01
00 04 03
F6 AF 1.42E-13 8.80E—05 1.50E + 1.38E + 3.73E-02 2.50E + 00 4.89E—-10 3.98E-01 3.82E—-04 2.50E + 00 2.55E—-06
00 00
STD 0.00E + 00 5.03E-05 3.55E-01 6.49E + 5.02E—02 0.00E + 00 4.22E-10 2.05E-01 2.39E-14 1.59E-04 1.10E-06
00
F7 AF 1.58E—04 8.72E—-05 1.13E-03 5.69E-01 9.71E—03 3.00E-05 5.99E—-03 5.85E—-03 9.50E—-03 8.63E—05 2.51E-04
STD  4.52E-05 1.00E—04 1.92E-03  2.19E-01  1.53E-02 4.32E-05 7.45E-03  2.16E-03 4.40E-03  1.21E-04  3.65E-04
F8 AF 4.19E + 03 4.36E + 1.42E + 2.66E + 4.19E + 03 2.59E + 03 1.51E + 04 1.11E + 02 3.59E + 2.02E + 03 4.40E + 01
01 03 03 03
STD  3.57E+02  9.90E +44  2.03E + 5.81E + 4.34E-03 493E+02 474E+03 9.71E+10  3.07E + 4.00E + 01  4.06E + 36
02 02 02
F9 AF 0.00E + 0.00E + 3.09E—-05 7.28E + 5.96E—100 9.12E-146 1.59E + 01 6.91E—-105 3.38E + 4.65. 3.32E + 00
00 00 01 01 E—289
STD  0.00E + 00 0.00E+00 9.35E-02  3.91E + 3.59E + 02 0.00E + 00  8.02E+00 0.00E + 00  1.20E + 0.00E + 00  1.50E + 00
01 01
F10 AF 8.88E—-16 8.88E—-16 2.47E-01 3.00E + 1.53E—-05 8.88E-16 1.03E-05 8.88E—16 8.53E-08 8.88E-16 7.99E-15
00
STD 0.00E + 00 0.00E + 00 1.75E-01 6.89E + 2.19E + 03 0.00E + 00 1.03E + 00 2.40E-15 7.93E-08 0.00E + 00 2.02E-15
00
F11 AF  0.00E + 0.00E + 5.70E-01  6.73E-01  2.10E-04  0.00E+00 2.81E-01  0.00E+00 1.48E-01  4.40E-01 0.00E +
00 00 00
STD 0.00E + 00 0.00E + 00 2.45E-01 4.85E—-01 3.91E + 02 5.86E—02 1.26E-01 2.98E-01 1.14E-01 0.00E + 00 2.60E—-02
F12 AF 2.01E-03 1.35E-07 8.70E-01 2.35E + 7.52E—-03 5.30E-01 1.27E + 00 4.70E-03 3.11E-01 1.37E-01 3.52E—-06
03
STD 3.54E-01 2.67E—-05 4.67E—-01 5.52E + 2.55E—-02 1.56E-01 1.06E + 00 8.79E—-03 4.92E-01 4.78E—03 8.47E—-03
03
F13 AF 7.31E-04 1.99E-04 1.07E + 6.25E + 6.81E—02 1.00E-01 3.65E-11 1.45E-01 1.10E-02 2.00E-01 2.16E—-06
00 00
STD 7.38E—02 1.46E—04 1.52E-01 3.48E + 5.25E + 00 2.30E-01 5.31E-03 8.66E—02 5.67E—03 8.33E-03 2.82E—-06
03
random host volume space. During the feeding of remora on the host, the o
O(initialization)+

search space can be seen as gradually decreasing. For ease of under-
standing, the above novel concepts and pseudo code of different location
update modes are given in Table 3. The flow chart is shown in Fig. 6.

In the third chapter, various features of this algorithm are explored
through experiments.

2.3. Computational complexity

In order to analyze the validity and practicability of the algorithm in
more detail, the computational complexity of the algorithm is given
according to the related factors such as the number, dimension and
maximum iteration times of remora. It is worth noting that there is no
sort algorithm. In the initialization process the computational
complexity is O(N). The computational complexity of the fitness func-
tion can be expressed as O(F(R) ). Computational complexity expressed
as O(N x T x D) for Free travelling stage and can also be expressed as
O(N x T x D) for Eat thoughtfully stage. The overall computational
complexity of the whole algorithm can be expressed as following for-
mulas:

11

O(Free travelling)+
O(Eat mindfully)

))

))

O(ROA) = Ofitness_function) x O(T « (
O(N)+
O(N x T x D)+

oy 0(( ON x T x D)

O(F(R)) x O(N x (TD + 1))

13)
3. Results and discussion
3.1. Experimental Setup

All the experimental series were carried out on MATLAB R2017b
(The Math Works Inc., Natick, MA, USA), and the computer was
configured as Intel(R) Pentium (R) CPU G4560 @3.50 GHz (Intel, Santa
Clara, CA, USA), using Microsoft Windows 7 system (Microsoft, Red-
mond, WA, USA).

In this section, in order to study the numerical efficiency perfor-
mance of the proposed ROA algorithm, a set of 29 unconstrained
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Table 13
Results of benchmark functions (F1 - F13) under 100 dimension.

Benchmark ROA HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO

F1 AF 0.00E + 00 4.10E-106 2.31E-03 2.73E+00 5.10E-02 9.88E—-100 1.48E-07 1.98E-70 9.72E-01 8.80E—-10 5.29E-28
STD 0.00E + 00 1.81E-92 2.01E-01 1.84E + 01 8.59E—-02 1.20E + 00 9.85E-07 4.59E—-68 2.58E + 03 1.00E + 00 1.14E-27

F2 AF 0.00E + 00 5.67E—53 3.15E-01 1.42E—-34 2.67E-03 1.82E-171 1.62E + 00 4.07E-51 3.01E+01 7.44E—15 5.48E—17
STD 0.00E + 00 1.31E-50 1.17E-01 2.24E—-06 1.33E-02 2.36E—-160 1.09E + 00 1.80E—-47 2.16E + 01 2.13E-20 1.13E-16

F3 AF 1.84E-309 1.44E-84 5.01E-01 8.51E + 04 6.37E + 03 2.02E + 02 1.75E + 02 5.39E + 04 3.94E + 04 4.40E—-20 4.09E—-06
STD 0.00E + 00 1.30E-79 3.29E + 00 1.69E + 04 1.26E + 04 3.62E + 02 8.51E + 02 1.45E + 04 9.55E + 03 0.00E + 00 3.94E-06

F4 AF 1.21E-171 1.10E-55 2.34E-01 3.61E + 01 6.89E—-01 1.00E + 00 7.88E + 00 8.10E + 01 6.52E + 01 1.00E + 00 7.02E—-07
STD 0.00E + 00 1.09E—48 2.00E-01 1.63E + 01 7.66E—01 1.10E + 00 2.71E + 00 2.33E + 01 8.44E + 00 1.75E + 00 5.82E—-07

F5 AF 2.70E + 01 3.41E-03 2.89E + 01 1.65E + 04 9.12E + 00 2.90E + 01 2.93E + 03 2.83E + 01 2.29E + 03 2.29E + 02 2.62E + 01
STD 4.59E-01 4.35E-03 5.40E + 00 2.26E + 05 3.46E + 00 1.02E + 01 7.68E + 02 4.56E—-01 2.06E + 07 1.03E + 02 8.32E-01

F6 AF 3.43E-02 1.81E-03 7.43E + 00 5.27E +01 1.70E-01 7.50E + 00 1.46E-07 2.48E + 00 2.35E + 00 7.50E + 00 5.05E-01
STD 8.11E-05 4.81E—-04 8.30E-01 2.49E + 01 7.66E—02 2.98E + 00 3.08E—-07 6.46E—01 4.86E + 03 7.46E + 00 4.70E—01

F7 AF 1.13E-05 2.64E-05 7.49E—-04 6.90E—02 1.87E-02 2.48E—05 2.17E-01 6.93E—04 2.79E + 00 7.86E—05 5.11E-03
STD 5.68E—05 6.48E—05 3.20E-03 3.35E-01 3.25E + 03 1.29E-04 6.51E—-02 7.16E—-03 5.93E + 00 6.90E—-05 1.32E-03

F8 AF 2.61E + 03 6.16E + 34 1.26E + 04 1.12E + 04 1.21E + 04 1.25E + 04 4.72E + 04 1.50E + 8.30E + 03 6.17E + 03 2.52E + 34

104
STD 4.74E + 01 1.27E + 45 3.61E + 02 8.83E + 02 1.36E + 02 1.13E + 03 1.01E + 04 4.80E + 9.55E + 02 6.16E + 02 9.07E + 34
103

F9 AF 0.00E + 00 0.00E + 00 9.96E—03 3.26E—02 5.60E + 00 1.00E + 00 4.97E + 01 2.30E + 00 1.63E + 02 4.53E + 01 2.12E + 00
STD 0.00E + 00 0.00E + 00 9.86E-01 3.96E + 01 4.56E + 02 0.00E + 00 1.81E+ 01 0.00E + 00 1.77E+ 01 0.00E + 00 2.20E + 00

F10 AF 8.88E—16 8.88E—-16 4.13E-02 6.21E—-06 8.90E—-03 8.99E-16 1.78E + 00 4.44E—15 1.99E + 01 9.88E—16 1.00E-13
STD 0.00E + 00 0.00E + 00 2.09E-01 3.58E + 00 5.13E + 00 0.00E + 00 4.80E—01 2.40E-15 6.92E + 00 0.00E + 00 1.21E-14

F11 AF 0.00E + 00 0.00E + 00 1.10E-01 5.72E—-02 6.10E + 00 2.00E-01 3.03E-03 3.50E-01 9.01E-01 1.64E-01 9.60E—03
STD 0.00E + 00 0.00E + 00 3.08E-01 2.89E-01 9.12E + 00 0.00E + 00 1.15E-02 3.36E—02 5.34E + 01 1.54E-01 9.74E—03

F12 AF 1.16E-03 8.26E—-06 1.04E + 00 4.05E + 01 6.07E—03 6.94E-01 4.61E + 00 5.39E-02 5.29E + 00 7.13E-01 3.99E-02
STD 7.21E-03 7.52E—-06 2.42E-01 2.40E + 04 7.90E-01 3.52E-01 5.35E + 00 9.05E—02 5.46E + 00 1.63E-01 1.80E—02

F13 AF 2.40E-02 3.50E—-08 3.09E + 00 5.40E + 00 2.14E + 01 2.60E + 00 2.15E + 00 5.74E-01 2.09E + 01 1.60E + 00 5.43E-01
STD 8.76E—02 1.27E—-04 2.32E-01 1.47E + 05 1.48E + 04 7.16E—-01 1.45E + 01 4.74E—-01 1.06E + 08 1.87E-01 2.61E-01

functions are taken from the classic benchmark functions CEC2005
(Suganthan, Hansen, Liang, & etc., 2005). Which can be divided into
three main types:

Unimodal (UM) functions: These functions are used to assess the
solution precision and the convergence rate of the proposed algo-
rithm. Which can be used to validate the exploitation (hardening)
capabilities of different optimizers. As shown in Table 4 is (F1-F7).
Multi-modal (MM) functions: These functions can be used to verify
the potential of the algorithm to exploration (diversify) and avoid
falling into local optimum which are from F8 to F23 in Tables 5 and
6.

Composition (CM) functions: Many papers have used these CM cases
for evaluation, which can well test the propensity of balancing
exploration and development, and can also be used as a challenging
problem to evaluate the ability to avoid local optimum, thus showing
the performance of the proposed optimizer. Reference (Marco et al.,
1996) for details. Which can be found in Table 7 (F24 to F29).

The functional composition, dimension, range limitation and optimal

position of functions has been given in each table. It is noteworthy that
Dim represents the number of variables designed for mathematical
functions. Some typical two-dimensional diagrams of test functions for
test cases are shown in Tables 4-7, the details of hybrid composition
function are also given in Fig. 7.

In order to verify the performance of the proposed algorithm, the

proposed ROA is compared with 10 other state of the art optimization
algorithms according to the test function results. The details of the
comparison algorithm are as follows:

Harris hawks optimization (HHO): In 2019, a new population-based
and nature-based optimization model. The main inspiration comes
from Harris hawks’ cooperative behavior and pursuit style. Accord-
ing to the dynamic characteristics of the scene and the escape mode
of prey, a variety of chase modes are proposed. The whole algorithm
simulates the dynamic model and behavior in a comprehensive and
vivid way.
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Sailfish optimizer (SFO): A new natural inspired heuristic optimiza-
tion algorithm in 2019, which consists of two populations, sailfish is
used to enhance the best search so far, sardines are used to scatter
search space.

Emperor penguin optimizer (EPO): Proposed in 2018 to simulate the
crowding behavior of Emperor Penguin. The main steps are to
generate the crowding boundary, calculate the temperature around
the crowding pile, calculate the distance and find the effective
mover.

Seagull optimization algorithm (SOA): A bionic algorithm published
in 2018, mathematically simulates the migration and attack of
seagull nature, which strengthens the exploration and development
in a given search space.

Spotted hyena optimizer (SHO): A new meta-heuristic algorithm
based on the behavioral characteristics of spotted hyenas was pro-
posed in 2017. The main concept is the social relationship between
spotted hyenas and their cooperative behavior. The three basic steps
of SHO are to search for prey, surround and attack prey.

Salp Swarm Algorithm (SSA): The main inspiration comes from the
social behavior of salps when sailing and foraging in the ocean,
which can effectively improve the initial stochastic solution and
converge to the optimal solution quickly. (2017)

Whale optimization algorithm (WOA): Simulates the social behavior
of humpback whale, and the search strategy of foam net is the core of
the algorithm. So far, it can still be used as a reference algorithm for
comparison with many other algorithms, which enough to see its
excellence. (2016)

Moth-flame optimization algorithm (MFO): Inspired by the moth’s
lateral orientation navigation method. When flying at night, moths
fly long distances in a straight line by keeping a fixed angle with the
moon, and eventually run on a spiral path (2015).

Multiverse optimizer (MVO): Through the concepts of white hole,
black hole and wormhole in cosmology. Mathematical models are
established for exploration, development and local search, respec-
tively. Location updating is mainly through roulette mechanism
(2015).
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Table 14
Results of benchmark functions (F1 - F13) under 500 dimension.
Benchmark ROA HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO
F1 AF 0.00E + 00 4.43E—98 2.55E-01 4.92E—-02 5.06E—01 5.05E—52 1.44E + 1.95E-60 4.78E + 1.51E-12 4.95E-13
03 04
STD 0.00E + 00 1.15E-95 4.06E + 8.16E + 8.74E + 02 4.12E + 00 4.83E + 3.56E—61 1.66E + 1.21E-01 1.71E-12
00 01 02 04
F2 AF 6.15E-172 3.27E-53 6.12E-01 5.89E-07 9.01E-04 1.50E-72 5.67E + 1.42E-54 3.46E + 4.75E—-17 3.44E-08
01 02
STD 4.45E-162 4.20E—-50 8.13E-01 3.22E-05 9.93E-03 2.50E—-02 5.85E + 5.31E—-44 3.91E + 1.80E-02 2.63E—-08
00 01
F3 AF 1.24E-299 1.56E-70 3.57E + 1.04E + 3.51E + 05 1.62E + 03 9.29E + 7.56E + 05 3.23E + 1.00E + 1.99E +
01 06 04 05 02 03
STD 0.00E + 00 1.26E-55 1.76E + 2.29E + 3.81E + 06 1.13E + 04 2.55E + 2.96E + 05 6.37E + 8.22E + 1.62E +
01 05 04 04 02 03
F4 AF 0.00E + 00 2.03E—-54 2.19E-01 5.45E + 3.59E-01 2.00E—-164 2.99E + 5.03E + 01 9.35E + 7.40E + 8.35E-01
01 01 01 01
STD 4.80E-161 1.53E—47 2.36E-01 1.78E + 7.19E-01 2.53E + 00 3.59E + 2.44E + 01 1.97E + 9.35E + 7.96E—-01
01 00 00 00
F5 AF 9.72E + 01 8.14E-04 1.17E + 3.58E + 2.64E + 01 9.90E + 01 3.50E + 9.82E + 01 1.66E + 1.87E + 9.58E +
02 06 05 08 02 01
STD 4.38E—01 6.97E—02 3.18E + 3.21E + 3.02E + 10 1.81E + 01 7.11E + 1.36E-01 6.18E + 1.71E + 7.54E-01
01 06 04 07 02
F6 AF 1.58E + 00 2.40E-04 2.64E + 1.39E + 6.30E-01 2.50E + 01 1.52E + 1.20E + 01 7.55E + 2.50E + 1.11E +
01 01 03 04 01 01
STD 6.72E-01 5.39E-04 2.22E + 1.26E + 1.30E + 00 0.00E + 00 3.74E + 2.72E + 00 1.42E + 0.00E + 9.43E-01
00 02 02 04 00
F7 AF 3.64E-05 5.26E—04 6.60E—04 3.29E-01 6.01E—-04 6.33E—-05 3.26E + 2.62E-03 4.30E + 1.86E—04 9.27E-03
00 02
STD 7.72E—-05 2.28E—-04 4.76E—03 3.91E + 4.91E + 03 3.48E—-04 6.86E—01 2.93E-03 1.01E + 1.17E-04 2.38E-03
00 02
F8 AF 4.49E + 03 2.85E + 31 4.19E + 4.13E + 4.19E + 04 4.13E + 04 1.78E + 1.52E + 2.18E + 1.87E + 4.88E +
04 04 05 101 04 04 30
STD 1.72E + 02 8.25E + 43 6.17E + 3.71E + 6.38E + 02 4.36E + 03 2.81E + 2.03E + 2.25E + 1.12E + 1.29E +
02 03 04 105 03 03 35
F9 AF 0.00E + 00 0.00E + 3.38E-01 1.59E-07 1.58E + 1.00E + 00 2.36E + 0.00E + 00 9.23E + 1.00E + 1.04E +
00 294 02 02 00 00
STD 0.00E + 00 0.00E + 00 2.31E + 4.79E + 1.01E + 00 1.02E + 01 4.09E + 2.08E-14 6.60E + 1.86E + 2.92E +
00 00 01 01 01 01
F10 AF 8.88E—16 8.88E—16 1.02E-01 6.39E—02 1.76E—04 8.90E—16 9.56E + 8.90E-14 1.97E + 8.90E—15 1.76E—07
00 01
STD 0.00E + 00 1.00E—26 1.60E-01 3.09E + 1.40E + 00 2.56E + 00 1.20E + 3.58E-15 1.14E-01 9.80E—05 5.66E—08
00 00
F11 AF 0.00E + 00 0.00E + 7.04E—-01 5.45E—-08 4.79E—-01 4.06E—100 1.53E + 5.20E-160 8.25E + 4.87E—-01 2.93E-02
00 01 02
STD 0.00E + 00 0.00E + 00 3.11E-01 3.66E—01 3.57E + 00 0.00E + 00 4.29E + 2.03E-17 1.25E + 8.20E—-02 9.19E-03
00 02
F12 AF 7.51E-03 2.40E—06 1.26E + 5.55E + 1.78E—-03 7.26E—01 3.85E + 1.25E-01 4.62E + 1.10E + 3.58E-01
00 05 01 08 00
STD 1.06E-08 7.90E—06 6.30E—02 4.65E + 4.42E + 01 3.18E-01 1.14E + 1.03E-01 2.04E + 1.75E-01 8.02E-02
05 01 08
F13 AF 6.03E-01 5.09E—-07 1.15E + 2.24E + 3.75E + 04 8.30E + 00 9.19E + 7.26E + 00 8.47E + 7.90E + 7.36E +
01 06 02 08 00 00
STD 6.29E—-05 3.33E-04 1.18E + 6.84E + 6.47E + 02 2.10E + 00 6.03E + 1.30E + 00 4.29E + 3.26E-01 5.10E-01
00 06 03 08

e Grey Wolf Optimizer (GWO): According to the leadership and
hunting mechanism of gray wolves in nature. Four gray wolves,
Alpha, Beta, Delta and Omega, were used to simulate leadership. The
establishment of three main steps of hunting, sticking and attacking
prey has been realized (2014).

Eleven comparison algorithms correspond to different algorithms
from 2019 to 2014, and the selection of these algorithms is novel or well
received. The parameters of these algorithms are selected from the ref-
erences related to the original algorithms, as shown in Table 8. All al-
gorithms use a population size and maximum iteration of 30 and 500,
respectively.

3.2. Experimental results indicators

In order to clearly and vividly demonstrate the experimental results
and performance of HHO, the following indicators in Table 9 are used as
criteria to compare with other optimization techniques.
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Generally speaking, these indicators can be divided into two cate-
gories. One is called performance evaluation, for instance, AT, AF and
Std, which are mainly based on individual algorithms. AT represents the
average execution time of each algorithm running independently for 30
times. The smaller the numerical value, the faster the execution speed
and the lower the computational complexity of the algorithm. In order to
make the results of the function more fair and universal, the AF and Std
can also be used as reference standards for comparison.

The other type is called statistical test, such as, the Wilcoxon’s Rank-
Sum test and Friedman test, which are mainly based on the overall
analysis of large data sets. WT is used to answer the question “Does two
samples represent two different populations?” p > 0.05 (or h = 1), there
is a significant difference, otherwise it is not. FT is a nonparametric
simulation of nonparametric variance bidirectional analysis. Used to
answer the question “Does at least two samples in a group of k samples
represent populations with different median values?” Designed to detect
significant differences between the behavior of two or more algorithms,
the overall performance of the algorithm can be ranked. Which has also
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Table 15
Results of benchmark functions (F1 - F13) under 1000 dimension.
Benchmark ROA HHO SFO EPO SOA SSA WOA MFO MVO GWO
F1 AF 0.00E + 00  2.90E—98 3.50E+00 4.05E+02  2.25E-02 1.59E-10 9.22E+04  1.04E—68 1.12E + 06 6.56E—06 5.79E—-03
STD 0.00E + 00 1.85E-96 4.11E + 01 2.85E + 02 2.01E+01 8.42E + 03 5.18E + 03 1.30E-61 3.75E + 04 4.70E—-03 3.26E—-03
F2 AF 2.12E-186  1.31E-53 1.17E+00  3.52E-05 2.73E-01 2.54E-08 5.35E+02  2.58E—47 8.22E + 99 2.24E-02 1.84E—02
STD  0.00E + 00 3.74E—-48 3.10E4+00 5.34E—04 1.33E-01 1.32E-01 1.80E+01  9.77E—43 3.79E + 7.48E4+00 5.07E—03
108
F3 AF 6.37E—-284  1.40E-65 245E+02 1.86E+07 550E+06 533E+05 1.49E+06  2.98E + 07 4.83E + 06 1.19E+06  3.26E + 06
STD  0.00E + 00 5.34E—-29 8.19E+02 8.22E+06 8.60E+08 1.32E+06 8.35E+05 8.93E + 06 8.31E + 05 4.58E+05 9.18E+05
F4 AF 1.14E-165  1.20E-54 2.75E-01 513E+01 7.29E+00 3.00E+00 4.07E+01  9.63E + 01 9.84E + 01 9.40E+01  6.85E+01
STD  5.44E-162 7.67E—46 2.37E-01 1.79E+01 1.78E4+00 1.70E+00 2.56E-+00 1.26E + 01 3.72E-01 1.97E+00  5.79E+ 00
F5 AF 4.94E + 02 1.15E-01 523E+02 3.65E+04 235E+00 499E+02 3.76E+07 4.97E + 02 5.24E + 09 5.89E+02 1.43E+03
STD  2.21E-01 3.08E-01 7.18E+01 283E+07 545E+10 0.00E+00 5.83E+06 4.56E—01 2.69E + 08 1.03E+02  3.70E+ 02
F6 AF 2.04E + 01 7.67E—04 1.25E+02 3.28E+02 1.20E+00 1.25E+4+02 9.68E+04  8.54E + 01 1.16E + 06 1.25E+02  8.88E+01
STD  6.55E + 00 3.80E—03 7.83E+00 837E+01 1.65E+01 0.00E+00 5.62E+03  1.04E + 01 3.38E + 04 0.00E+00  2.49E + 00
F7 AF 5.35E—-05 1.33E-04 2.49E—-02 3.19E-02 3.15E-02 1.06E—04 2.45E + 02 5.37E-05 3.94E + 04 3.04E—-04 1.95E-01
STD 1.46E-04 1.74E—-04 1.76E—02 1.22E+ 02 1.45E + 02 4.99E—-05 3.69E + 01 4.43E-03 1.81E + 03 7.00E—-05 6.59E—-02
F8 AF 1.02E + 04 549E+33 2.09E+05 1.49E+05 2.09E+05 2.09E+05 3.99E+05 1.57E + 6.17E + 04 5.38E+04 4.93E-+34
104
STD 5.27E + 03 4.14E + 40 1.76E + 03 2.69E + 04 1.85E+ 01 2.85E + 04 6.00E + 04 7.82E + 5.34E + 03 2.43E+03 2.40E + 34
105
F9 AF 0.00E + 00  0.00E + 2.43E-02 1.27E+02  5.15E-01 5.13E4+00 3.15E+03  4.58E + 02 6.87E + 03 8.00E+03  1.25E+02
00
STD  0.00E + 00 0.00E + 00 5.44E+00 2.11E+4+02 7.84E+01 456E+02 1.18E+02 6.87E + 03 1.60E + 02 2.38E+03  3.65E+01
F10 AF 8.88E-16 8.88E-16 2.59E-01 6.01E—-03 7.14E+4+00  9.88E-15 1.40E+01  7.99E-15 2.03E + 01 8.98E—15 7.44E—-03
STD  0.00E + 00 0.00E + 00  2.02E—01 2.18E+00  1.99E-03 1.66E—01 2.63E-01 2.63E—-15 1.11E-01 6.55E—02 1.94E-03
F11 AF 0.00E + 00 0.00E + 5.89E—-03 1.65E + 00 5.63E + 03 6.00E + 00 7.97E + 02 9.75E + 03 9.96E + 03 2.09E + 03 1.45E-03
00
STD  0.00E + 00 0.00E + 00  4.31E-01 5.51E-01 5.56E—01 4.17E+00 4.86E+01  1.36E + 01 3.41E + 02 8.91E+01  4.16E-02
F12 AF 4.81E—-04 1.84E-07 1.20E + 00 1.58E+ 03 2.84E—-02 8.90E-01 1.61E + 06 1.83E-01 1.11E + 10 1.16E + 00 1.82E+ 00
STD  3.38E-02 4.07E—06 2.94E-02 6.76E+06  5.52E+02  2.96E-01 8.21E+05 1.11E-01 8.05E + 08 1.34E-02 1.83E + 00
F13 AF 8.32E + 00 6.91E—04 7.21E4+01 2.34E+05 7.90E+04 239E+01 3.82E+07 2.50E + 01 2.13E + 10 4.85E+01  1.02E +02
STD  3.72E + 00 6.35E—04 7.21E4+00 1.91E+07 545E+04 1.33E+01 8.60E+06  8.84E + 00 1.14E + 09 2.61E-01 3.94E + 01
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Fig. 9. The trend chart of fitness function value of function 1-13 and box diagram.

been used in experiments to determine the parameter C.

3.3. Independent evaluation of algorithm performance

3.3.1. Qualitative analysis
The basic performance of ROA was measured primarily.

Several

standard single-mode and multi-mode test problems are evaluated. The
results of three basic data evaluation: Search history, Track of the first

remora, and Convergence effects are shown in Fig. 8.

e Search history: The first two dimensions of the search agent are

selected, and the corresponding two-dimensional scatter plot is made
by iteration, which shows the changing trend of particles in the plane
image. It can be seen that the initial particle first fill the solution
space within a limited range, then converge slowly from all di-
rections, and finally converge to the optimal solution. Through
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observation and analysis, it can be seen that the particles are
dispersed in the whole solution space in the process of searching for
simple functions, with uniform distribution of scatter points in the
early stage and rapid concentration in the later stage. In the early and
late stages of the optimization process of complex functions, the
density of scattering points is obviously different. This shows that
when dealing with different problems, the algorithm can change the
balance between exploration and exploitation.

e Track of the first remora:Taking the trajectory of the first Remola as

an example, the characteristics of the algorithm are further exam-
ined. It can be seen from the trajectory diagram in Fig. 8 that there is
a large sudden change in the early optimization stage. The magni-
tude of the change basically covers the entire solution space, can
make a big jump, does not fall into the early local optimum, reveals
that ROA has better exploration ability. In the late optimization
stage, the simple function converges directly, and the complex
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function gradually changes. This proves that the update of the pop-
ulation continues, and also corresponds to the process from explo-
ration to development. As the number of iterations increases, the
magnitude of these fluctuations is gradually reduced, as shown by
the trajectories of F7 and F13 in Fig. 8. At the end of the search for
excellence, Remora’s movement tends to be stable and converges to
the optimal solution.

Convergence metric:The convergence curve shows the trend of the
fitness function value. Simple functions such as F1, F3, and F4 have a
smoother fitness function curve that lasts 500 iterations. Each gen-
eration can effectively find the best, and finally find the exact min-
imum value of 0. More complex functions such as F7, F10, and F13
are stepwise updated, indicating the existence of stagnation between
populations. However, there are still fluctuations in the curve at the
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tinued).

late stage of convergence, indicating that the diversity between
populations still exists.

3.3.2. Scalability analysis

A new type of algorithm needs to be comprehensively analyzed. In
the literature, scalability is an important indicator. It mainly compares
the conclusions by changing the dimensions of the test function, and
effectively judges the influence of the dimension expansion on the
execution efficiency of the algorithm. According to experience, the F1
and F13 of UM and MM were tested in four dimensions of 30, 100, 500
and 1000. The AF and STD indicators were selected, and the results of
independent operation 30 times and 500 iterations were made in
Table 10. Use FT to further make a simple statistical analysis of the data
in Table 10, as shown in Table 11. It can be seen from the data
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Table 16
Results of benchmark functions (F14 - F29).
Benchmark ROA HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO
F14 AF 9.98E-01 9.98E—-01 2.85E + 9.98E—-01 9.98E-01 9.98E-01 9.98E—-01 5.93E + 9.98E—-01 9.98E—-01 2.98E +
00 00 00
STD 0.00E + 3.14E-01 3.19E + 3.67E + 00 1.04E + 3.22E + 1.96E—-16 8.43E-01 2.33E + 5.42E + 00 4.35E +
00 00 04 00 00 00
F15 AF 3.11E-04 3.32E-04 8.88E—-04 2.82E-02 2.25E-03 1.48E-01 1.08E—-03 5.74E—-04 7.83E—04 1.48E-01 1.64E-03
STD 1.74E-02 3.46E—05 1.04E-03 1.32E-02 5.27E + 5.43E—-02 5.85E—-04 6.21E—04 4.61E—-04 1.62E—-04 3.61E—-04
17
F16 AF —1.03E —1.03E —1.02E + —1.03E + —1.03E 0.00E + —1.03E —1.03E —1.03E 0.00E + 00 —1.03E
+ 00 + 00 00 00 + 00 00 + 00 + 00 + 00 + 00
STD 0.00E + 5.91E-11 1.05E-02 4.54E—-01 2.70E-07 2.93E-01 2.24E-14 2.02E-10 0.00E + 5.77E-08 7.67E—08
00 00
F17 AF 3.98E-01 3.98E-01 1.76E + 4.61E—-01 3.98E-01 6.45E—01 3.98E-01 3.98E-01 3.98E-01 4.98E—01 3.98E-01
00
STD 0.00E + 4.12E—-05 1.40E-01 2.49E-01 9.38E + 7.08E—02 2.70E-14 2.27E—-05 0.00E + 2.73E-05 3.02E-06
00 11 00
F18 AF 3.00E + 3.00E + 7.00E + 3.20E + 01 3.00E + 3.00E + 3.00E + 3.00E + 3.00E + 2.78E + 02 3.00E +
00 00 00 00 00 00 00 00 00
STD 0.00E + 1.64E—-06 3.03E + 1.92E + 00 9.55E + 0.00E + 2.33E-13 1.40E-04 1.61E-15 2.86E—05 2.38E—-05
00 01 10 00
F19 AF —3.86E —3.86E —3.78E + —3.79E + —3.55E + —3.66E + —3.86E —3.86E —3.86E —6.80E—02 —3.86E
+ 00 + 00 00 00 00 00 + 00 + 00 + 00 + 00
STD 1.46E-17 2.98E-03 1.81E-01 2.78E-01 2.35E-01 3.61E-01 1.79E-12 1.17E-02 9.36E—16 1.20E-04 5.11E-04
F20 AF —3.20E —3.09E + —1.94E + —1.63E + —2.75E + —1.15E + —3.18E + —3.19E + —3.19E + —5.11E-E-03 —3.20E
+ 00 00 00 00 00 00 00 00 00 + 00
STD 9.14E-19 7.26E—02 2.80E-01 5.41E-01 5.39E-01 3.57E-01 6.51E—-02 5.14E-02 6.19E—-02 6.01E-02 5.89E-02
F21 AF —1.01E —1.02E + —1.33E + —5.63E + —1.01E —1.02E + —2.63E + —5.06E + —2.68E + —1.02E + 01 —1.02E +
+ 01 01 00 00 + 01 01 00 00 00 01
STD 2.63E + 3.98E-02 9.76E—01 1.44E + 00 2.25E-01 2.93E + 3.29E + 2.74E + 3.76E + 1.01E-02 1.08E—-03
00 00 00 00 00
F22 AF —1.04E —1.04E —2.76E + —8.83E-01 —9.30E + —1.04E —2.75E + —2.76E + —1.04E —5.13E + 00 —1.04E
+ 01 + 01 00 00 + 01 00 00 + 01 + 01
STD 2.56E + 3.25E-02 1.06E + 1.43E + 00 1.21E-01 3.00E + 2.55E + 3.91E + 3.54E + 1.32E-02 8.89E—-04
00 00 00 00 00 00
F23 AF —1.05E —1.05E —2.15E + —4.26E + —1.01E + —1.05E —2.43E + —2.42E + —1.05E —1.05E + 01 —1.05E
+ 01 + 01 00 00 01 + 01 00 00 + 01 + 01
STD 2.79E + 3.22E-02 8.14E-01 1.40E + 00 2.31E-01 3.03E + 3.53E + 3.56E + 3.46E + 3.83E-02 1.00E-03
00 00 00 00 00
F24 AF 2.29E + 4.36E + 1.06E + 1.20E + 03 2.86E + 1.17E + 4.01E + 5.86E + 4.87E + 1.63E + 03 6.51E +
02 02 03 02 03 02 02 02 02
STD 1.45E + 1.27E + 1.79E + 1.87E + 02 1.74E + 1.40E + 1.48E + 7.14E + 1.07E + 1.90E + 02 1.59E +
01 02 02 01 02 02 01 02 02
F25 AF 9.00E + 9.10E + 9.10E + 1.44E + 03 2.95E + 9.10E + 9.67E + 1.12E + 9.73E + 9.10E + 02 9.03E +
02 02 02 03 02 02 03 02 02
STD 0.00E + 0.00E + 1.72E-01 2.99E + 01 2.12E + 0.00E + 1.22E + 1.34E + 2.46E + 0.00E + 00 4.05E +
00 00 01 00 01 02 01 01
F26 AF 9.00E + 9.10E + 9.10E + 1.38E + 03 9.10E + 9.10E + 9.65E + 1.12E + 9.18E + 9.10E + 02 9.38E +
02 02 02 02 02 02 03 02 02
STD 0.00E + 0.00E + 4.69E—-01 5.26E + 01 5.95E + 0.00E + 1.32E + 9.55E + 3.08E + 0.00E + 00 4.25E +
00 00 01 00 01 01 01 01
F27 AF 9.00E + 9.10E + 9.10E + 1.45E + 03 2.89E + 9.10E + 9.43E + 1.30E + 9.66E + 9.10E + 02 9.92E +
02 02 02 03 02 02 03 02 02
STD 0.00E + 0.00E + 2.46E—01 4.44E + 01 7.98E + 0.00E + 2.05E + 8.97E + 2.85E + 0.00E + 00 6.22E +
00 00 01 00 01 01 01 01
F28 AF 9.00E + 9.28E + 1.43E + 1.48E + 03 1.43E + 1.43E + 9.00E + 1.39E + 1.10E + 1.40E + 03 1.20E +
02 02 03 03 03 02 03 03 03
STD 5.32E + 1.11E + 6.30E + 4.16E + 01 2.18E + 2.27E + 1.58E + 9.14E + 9.16E + 3.01E + 01 1.16E +
00 02 00 02 01 02 01 00 02
F29 AF 9.59E + 1.21E + 1.42E + 1.45E + 03 1.43E + 1.31E + 1.16E + 1.30E + 1.11E + 1.41E + 03 1.33E +
02 03 03 03 03 03 03 03 03
STD 5.25E + 1.54E + 1.41E + 3.22E + 01 5.12E + 2.85E + 2.51E + 2.62E + 1.35E + 5.46E + 01 1.01E +
00 02 01 02 01 02 01 01 02

comparison that as the dimension increases, the performance of the al-
gorithm optimization gradually decreases, which is consistent with the
results obtained by the FT statistical test. However, as can be seen from
the ranking ratio that although the dimension increase is large, the in-
crease in the ranking is small. It shows that ROA can maintain good
exploratoryness under the condition of exploiting certain optimality
when dealing with high-dimensional problems.

3.4. Comparative evaluation of algorithm performance

After exploring the characteristics of the ROA itself, further com-
parison with the previously selected algorithm. Mainly for three in-
dicators: fitness function value, algorithm running time and statistical
analysis.

e Fitness function value

Tables 12-15 shows that the 11 algorithms independently run the
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Table 17
The running time of the benchmark function (F1-F29).
Benchmark ROA HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO
F1 AT 2.20E-01 1.49E-01 6.86E—02 1.83E-01 6.53E-01 7.60E—02 6.29E—-02 4.35E—-02 9.38E—-02 5.56E—01 6.15E—02
STD 6.48E—-03 2.82E-02 1.98E-02 1.41E-02 7.56E—02 1.39E-02 1.07E-02 8.85E-03 1.34E-02 8.23E-02 1.24E-02
F2 AT 2.87E-01 1.75E-01 8.91E-02 2.00E-01 6.66E—01 9.63E—02 7.92E-02 5.98E—02 1.13E-01 5.53E-01 7.75E—02
STD 1.84E—04 1.64E-03 1.40E-03 3.11E-04 3.22E—-02 5.18E—-04 1.11E-03 3.51E-04 9.80E—04 1.81E-03 4.58E—-04
F3 AT 7.11E-01 4.94E-01 2.16E-01 3.29E-01 7.47E-01 2.29E-01 2.05E-01 1.85E-01 2.39E-01 7.01E-01 2.01E-01
STD 3.18E—-04 9.88E—03 4.64E—04 8.48E—04 1.34E-02 6.31E-04 1.92E-03 6.24E—04 7.44E—04 4.21E-03 3.88E-03
F4 AT 2.30E-01 1.90E-01 6.98E—02 1.80E-01 6.39E-01 7.71E—02 6.67E—02 4.41E—-02 9.56E—02 5.62E—01 5.98E—02
STD 1.98E—04 1.94E-03 1.24E-03 8.74E—-04 5.78E—03 3.80E-03 9.19E—-04 3.79E-04 1.67E-03 2.19E-03 1.06E—-03
F5 AT 3.22E-01 2.86E—01 9.58E—02 2.12E-01 6.68E—01 1.05E-01 8.92E-02 6.89E—02 1.23E-01 5.77E-01 8.55E—02
STD 2.14E—-04 2.84E—-03 4.94E—-04 3.50E—-04 2.76E—02 1.06E-03 6.13E—-04 1.06E—03 1.51E-03 1.68E—03 6.77E—04
F6 AT 2.29E-01 2.16E-01 6.92E—-02 1.81E-01 6.59E—-01 7.72E—02 6.35E—-02 4.32E-02 9.51E-02 5.56E—-01 6.03E—02
STD 1.17E-04 1.64E-03 8.93E—-04 8.27E—04 3.61E-02 1.01E-03 1.08E-03 9.36E—04 1.30E-03 2.16E—-03 7.36E—04
F7 AT 3.70E-01 2.60E-01 1.07E-01 2.19E-01 6.95E—01 9.21E—-02 9.85E—02 7.78E—02 1.33E-01 5.43E-01 9.61E—02
STD 1.77E-04 2.33E-03 9.21E-04 4.26E—-04 8.84E—-03 9.18E—-04 1.19E-03 7.61E-04 1.58E—-03 2.63E—-03 1.87E-03
F8 AT 3.28E-01 3.27E-01 1.04E-01 2.08E-01 6.77E—-01 1.02E-01 8.83E-02 9.90E—-02 1.22E-01 5.81E-01 9.03E—-02
STD 1.75E-04 4.60E—03 1.18E-03 1.25E-03 3.07E—02 8.93E—-04 1.07E-03 1.03E-03 1.65E-03 1.52E-03 7.81E-04
F9 AT 2.15E-01 2.36E-01 7.76E—02 1.86E—01 6.14E-01 8.03E—02 7.12E—-02 5.31E—-02 1.01E-01 5.37E-01 6.67E—02
STD 6.52E—-04 2.03E-03 5.27E-04 1.42E-03 4.37E—-02 1.34E-03 9.10E-04 1.16E-03 1.01E-03 2.23E-03 3.45E-03
F10 AT 2.79E-01 2.79E-01 9.87E—02 2.12E-01 6.28E—01 1.00E-01 9.04E—02 6.75E—02 1.20E-01 5.97E-01 8.33E—-02
STD 4.49E—-04 2.40E-03 1.03E-03 1.24E-03 3.73E—-02 7.45E—04 1.05E-03 9.91E—-04 1.68E—03 3.04E—-03 8.43E—-04
F11 AT 3.31E-01 3.14E-01 1.21E-01 2.31E-01 6.31E-01 1.24E-01 1.05E-01 8.17E—-02 1.41E-01 6.09E—-01 9.90E—-02
STD 7.74E—04 2.74E-03 1.14E-03 1.20E-03 1.08E-02 9.75E—-04 1.29E-03 1.80E-03 2.33E-03 2.95E-03 1.40E-03
F12 AT 8.83E-01 6.72E-01 2.62E-01 3.93E-01 8.60E—01 2.68E-01 2.53E-01 2.27E-01 2.86E—01 7.58E—01 2.48E-01
STD 5.78E—-04 4.88E—-03 1.75E-03 1.00E-03 2.23E—-02 8.52E—-04 1.15E-03 4.97E—-04 3.03E-03 4.27E—-03 3.54E-03
F13 AT 8.74E-01 6.73E-01 2.65E-01 3.93E-01 8.25E-01 2.66E—-01 2.53E-01 2.28E-01 2.87E-01 7.49E-01 2.50E-01
STD 2.64E—-04 6.07E—03 2.14E-03 1.70E-03 1.89E-02 2.89E-03 1.89E-03 1.37E-03 1.66E—03 2.28E-03 1.66E—03
F14 AT 2.85E+ 00 2.20E + 00 8.71E-01 9.99E-01 1.47E + 00 8.72E—-01 8.55E—01 8.17E-01 8.81E-01 1.30E + 00 8.32E-01
STD 1.47E-03 1.89E-02 2.93E-03 2.57E-03 7.00E—02 4.81E—-03 3.79E-03 3.46E—-03 3.85E-03 3.42E-03 8.26E—03
F15 AT 2.68E-01 2.35E-01 8.21E-02 1.92E-01 6.68E—01 8.55E—02 6.72E—02 5.27E—02 9.74E—02 5.16E-01 5.67E—02
STD 2.75E—-04 1.65E-03 1.48E—03 5.25E—-04 6.15E—02 7.73E-04 9.72E—-04 1.20E-03 4.03E—-04 3.57E—-03 8.36E—04
F16 AT 2.05E-01 1.96E-01 6.12E—-02 1.70E-01 6.04E-01 6.32E—02 4.72E—-02 3.32E-02 7.58E—-02 4.61E-01 3.36E—-02
STD 1.13E-04 2.39E-03 8.79E—-04 2.57E—-04 2.84E—-02 2.47E-03 6.00E—-04 9.54E—-04 9.84E—-04 2.82E-03 3.15E-04
F17 AT 1.67E-01 1.72E-01 5.36E—02 1.61E-01 8.92E-01 5.99E-02 3.88E-02 2.43E-02 6.81E—-02 4.79E-01 2.38E—-02
STD 5.49E—-04 3.14E-03 6.89E—-03 3.11E-03 6.11E—-02 3.45E-03 2.51E-02 1.19E-03 3.64E—-03 5.26E—03 9.01E—-04
F18 AT 1.67E-01 1.67E-01 5.05E-02 1.59E-01 6.04E-01 5.67E—02 3.72E-02 2.28E-02 6.39E—-02 4.75E-01 2.34E-02
STD 1.77E-04 1.35E-03 1.93E-03 2.34E-03 2.15E—-02 7.42E—-04 9.14E—04 1.09E-03 1.04E-03 3.65E—03 1.13E-03
F19 AT 3.81E-01 3.25E-01 1.14E-01 2.23E-01 6.93E-01 1.20E-01 9.68E—02 8.16E—02 1.28E-01 5.28E-01 8.69E—02
STD 1.92E-04 1.41E-03 5.84E—-04 6.65E—03 6.92E—-03 8.89E—-04 1.23E-03 6.01E-04 1.61E-03 5.38E—03 7.87E—04
F20 AT 3.77E-01 3.17E-01 1.15E-01 2.24E-01 6.93E-01 1.21E-01 1.03E-01 8.33E—02 1.34E-E-01 5.50E—01 9.34E—02
STD 1.74E-04 2.09E-03 7.78E—04 4.83E—-04 4.20E—-02 9.59E—-04 1.14E-03 8.72E—-04 1.42E-03 2.91E-03 2.66E—03
F21 AT 7.12E-01 5.74E-01 2.15E-01 3.23E-01 7.83E—-01 2.17E-01 2.00E-01 1.79E-01 2.31E-01 6.30E—-01 1.85E-01
STD 4.31E-03 4.06E—03 5.23E—-04 9.53E—-04 2.62E—02 9.67E—04 1.73E-03 1.35E-03 1.10E-03 3.18E-03 1.19E-03
F22 AT 8.85E—01 7.03E-01 2.72E-01 3.90E-01 8.49E-01 2.77E-01 2.55E-01 2.33E-01 2.88E-01 6.98E—01 2.36E—01
STD 3.32E-04 4.12E-03 1.73E-03 7.84E—-04 4.21E-02 1.27E-03 3.02E-03 1.57E-03 1.79E-03 2.72E-03 3.70E-03
F23 AT 1.18E + 00 9.18E-01 3.55E-01 4.73E-01 9.36E—01 3.64E-01 3.45E-01 3.24E-01 3.69E-01 7.80E—01 3.27E-01
STD 2.83E—-04 5.66E—03 1.13E-03 1.57E-03 4.68E—02 1.61E-03 1.39E-03 1.49E-03 1.33E-03 5.48E—03 2.29E-03
F24 AT 1.71E+ 02 1.26E + 02 5.45E + 01 5.46E + 01 5.96E + 01 5.45E + 01 5.46E + 01 5.32E + 01 5.31E + 01 5.38E + 01 5.31E +
01
STD 1.24E-01 1.01E + 00 4.38E—02 4.17E—-02 6.81E-01 1.61E-01 1.42E-01 1.60E-01 8.47E—02 7.16E—02 1.30E-01
F25 AT 1.61E + 02 1.28E + 02 5.58E + 01 5.58E + 01 5.93E + 01 5.50E + 01 5.53E + 01 5.38E + 5.39E + 01 5.45E + 01 5.38E + 01
01
STD 2.34E-01 6.60E—01 8.80E—02 7.25E—-02 1.31E + 00 1.47E-01 1.80E-01 1.38E-01 1.23E-01 5.89E—02 1.06E-01
F26 AT 1.60E + 02 1.29E + 02 5.54E + 01 5.58E + 01 5.60E + 01 5.49E + 01 5.40E + 01 5.39E + 01 5.37E + 01 5.43E + 01 5.38E + 01
STD 7.05E-01 6.00E-01 5.18E—-02 9.63E—-02 1.11E + 00 1.53E-01 1.27E-01 1.36E-01 1.71E-01 4.81E—-02 1.50E-01
F27 AT 1.66E + 02 1.32E + 02 5.57E + 01 5.56E + 01 5.85E + 01 5.51E+ 01 5.40E + 01 5.40E + 01 5.37E + 01 5.43E + 01 5.38E + 01
STD 2.44E-01 8.29E-01 5.03E—-02 4.01E-02 1.09E + 00 1.92E-01 7.09E-02 1.79E-01 9.11E-02 1.50E-01 1.17E-01
F28 AT 1.96E + 02 1.49E + 02 6.29E + 01 6.32E + 01 6.75E + 01 6.27E + 01 6.09E + 01 6.09E + 01 6.07E + 01 6.16E + 01 6.06E +
01
STD 1.47E-01 1.07E + 00 1.59E-01 2.32E + 00 1.65E + 00 1.04E-01 2.34E-01 1.64E-01 2.01E-01 6.24E—-01 1.99E-01
F29 AT 1.96E + 02 1.48E + 02 6.27E + 01 6.28E + 01 6.71E + 01 6.27E + 01 6.10E + 01 6.09E + 01 6.08E + 01 6.15E + 01 6.07E +
01
STD 1.20E-01 8.60E-01 9.47E—-02 3.69E-01 5.01E-01 1.36E-01 7.68E—-02 1.35E-01 1.21E-01 1.46E-01 2.05E-01
Table 18
FT for AT of benchmark functions (F1-F29).
Standard ROA HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO
FT 6.1034 8.8276 4.4741 5.8103 10.6207 5.2155 4.3879 3.0000 5.5172 8.2931 3.7500
Rank 8 10 4 7 11 5 3 1 6 9 2
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Table 19

WT for F1-F13 with 30 dimensions (p>0.05 is displayed in bold).
ROA vs. / HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO
F1 1.25E-103 2.34E-162 9.13E—-164 9.85E-161 2.00E-93 1.24E-161 1.02E-124 9.87E—163 1.55E-129 2.10E-140
F2 4.95E—-98 1.33E-163 9.24E—-162 2.05E-159 1.38E—-186 1.04E-163 3.41E-111 1.13E-163 4.91E-02 1.46E—136
F3 3.41E-106 7.03E—164 1.25E-164 4.60E—165 3.38E—183 5.57E—-164 4.29E—-164 1.09E-163 1.88E—126 2.00E-156
F4 3.49E—-98 1.43E-172 9.22E—-164 7.28E—164 6.97E—-173 3.47E—-164 2.38E—-164 1.05E-163 8.45E—-164 2.21E-151
F5 1.74E-141 1.74E-177 1.15E—-163 1.24E-84 1.36E—-178 3.80E-163 8.73E-15 1.13E-163 8.04E—-163 7.97E—-39
F6 8.11E-150 1.24E-173 1.29E-163 1.71E-10 9.70E—-180 9.64E—28 5.84E—-159 5.56E—163 5.13E-163 3.65E-81
F7 8.34E-51 2.01E-166 6.37E—168 8.94E-171 6.37E—-191 6.96E—170 6.75E—97 3.18E—-168 1.20E-12 8.79E—134
F8 4.21E-162 2.24E-187 1.10E-158 7.34E—-132 7.37E-167 3.97E-153 6.76E—162 2.40E—-159 3.98E-164 9.32E—-152
F9 1.38E-52 1.59E-193 3.49E-184 4.15E-137 2.52E—-04 9.29E—186 7.37E-71 2.52E—-184 1.35E-19 6.62E—173
F10 2.45E-57 1.99E-188 1.63E—182 1.40E—188 1.14E-05 1.15E-181 1.38E—-162 1.53E-182 5.31E-127 5.64E—-161
F11 3.96E—45 1.01E-184 2.50E-183 1.51E-105 1.91E-12 5.79E—-182 3.09E-55 1.88E—182 6.71E—183 1.16E—41
F12 2.11E-141 4.20E—181 1.13E-163 1.48E—149 1.45E-170 1.26E—162 2.72E-161 1.15E-162 3.69E-162 1.30E-160
F13 9.76E—154 2.52E-165 3.49E-164 2.91E-15 3.12E-167 9.03E—-164 1.55E-14 1.46E—-163 3.22E-162 1.15E-105

Table 20

WT for F1-F13 with 100 dimensions (p>0.05 is displayed in bold).
ROA vs. / HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO
F1 5.70E-91 1.39E-166 1.46E—163 2.06E—144 2.28E-70 7.04E—161 5.34E—-118 1.39E-162 1.00E-127 1.37E-132
F2 3.47E—E—-98 1.08E—164 3.55E-162 1.17E-162 1.37E-186 1.17E-163 1.65E—-113 1.16E-163 1.08E-01 2.35E-130
F3 2.02E—-102 1.66E—164 1.16E-163 2.18E—-156 1.82E-181 2.58E-163 1.16E-163 1.16E-163 3.24E-126 1.67E-156
F4 9.31E-96 9.43E-169 1.07E-163 1.62E-161 4.22E—13 1.28E-163 2.80E-164 1.04E-163 4.03E—-163 6.62E—153
F5 3.02E-146 3.04E-173 1.08E-163 7.21E—-24 1.23E-176 1.91E-163 1.33E-105 3.81E-163 4.71E—-163 8.40E—-08
F6 2.67E—145 1.98E—-163 1.37E-163 7.91E-39 7.41E-177 3.07E-23 7.93E—-155 6.30E-163 4.34E—-163 3.73E—-47
F7 5.60E—82 6.22E—-136 2.02E-173 5.30E—-180 5.58E—65 5.22E-174 4.80E—139 1.77E-173 5.40E-61 4.30E—-132
F8 4.54E-161 2.02E—-180 4.53E—-143 1.75E-157 2.49E-143 5.75E—148 4.87E—160 2.85E-153 1.24E-156 2.02E-146
Fo 3.88E—-32 8.17E—-183 5.43E-183 1.94E-177 4.33E—-04 1.35E—-181 3.86E—48 5.02E-182 1.13E-19 4.74E—-173
F10 1.55E—54 6.42E—-192 5.80E—181 6.78E—136 2.83E-01 9.93E—-182 6.05E—159 5.59E-181 2.19E-125 3.02E-154
F11 8.51E—49 3.57E-185 7.23E—-184 4.06E—48 6.45E—78 1.41E-181 8.03E—-58 1.66E—183 1.06E—183 1.66E—35
F12 2.01E-153 1.00E-167 1.18E-163 9.06E—02 1.59E-160 1.58E-163 2.94E-158 3.49E-163 3.36E—-162 2.17E-140
F13 1.25E-155 4.26E—165 1.10E-163 3.40E-138 1.37E-168 3.60E—159 2.09E-160 1.03E-163 1.72E-162 4.32E—159

Table 21

WT for F1-F13 with 500 dimensions (p>0.05 is displayed in bold).
ROA vs. / HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO
F1 8.94E—-101 7.04E—-173 5.55E-164 6.78E—159 5.01E-27 1.64E-161 4.79E—-129 6.20E—164 7.04E—130 4.10E—-138
F2 1.43E-97 7.30E—-163 9.55E—154 2.93E-159 1.37E—-186 1.25E-161 2.39E-113 1.03E-162 1.71E-01 1.18E—-128
F3 2.74E-111 2.15E-166 1.16E—-163 1.43E-147 6.78E—184 8.16E—164 1.16E-163 1.15E-163 4.24E—-125 2.92E-155
F4 1.33E-93 1.07E-163 8.33E—165 1.16E-160 2.03E-58 2.62E-163 1.01E-162 9.80E—164 1.08E-162 1.19E-150
F5 1.59E-142 4.13E—-168 1.13E-163 9.25E-77 2.46E—-179 1.79E—-149 4.59E-116 4.90E—-163 1.65E-163 1.56E—46
F6 8.44E—148 1.48E—-162 1.21E-163 1.11E-13 3.26E-175 8.35E—-24 1.17E-159 5.10E-163 2.76E-163 1.06E—98
F7 2.72E-05 9.93E—-166 6.10E-171 6.04E-177 1.28E-111 1.03E-170 1.41E-164 5.91E-171 2.21E-57 2.25E-76
F8 2.24E-157 6.34E—175 4.14E—-129 3.64E-162 2.96E-116 1.44E-163 2.31E-163 4.85E—-126 1.48E—159 2.27E-153
F9 1.50E—32 5.41E-187 3.52E-184 2.50E-93 1.47E-04 1.91E-184 1.77E-61 3.50E—-184 4.82E—-18 5.36E—183
F10 4.00E—49 2.58E-195 5.89E-181 5.68E—-152 7.41E—-05 1.90E-181 9.14E-150 5.83E—181 1.11E-125 4.69E—-148
F11 5.15E—46 5.80E—182 7.20E—182 3.64E—-06 1.56E-55 2.53E-181 4.00E—52 1.06E—182 1.20E-182 6.95E—34
F12 2.27E-154 5.90E—-169 1.12E-163 2.19E-105 3.36E—-179 3.68E—-164 6.00E—-162 1.13E-163 1.55E-163 2.37E-147
F13 6.77E—151 1.98E-166 1.14E—-163 5.18E—-24 5.37E-181 8.34E-162 6.22E—-161 1.13E-163 2.13E-162 4.50E—-158

Table 22

WT for F1-F13 with 1000 dimensions (p>0.05 is displayed in bold).
ROA vs. / HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO
F1 5.96E—103 3.81E-163 8.30E—164 1.09E-160 5.71E-104 3.67E—-162 6.00E—123 6.50E-163 2.07E-130 7.33E—-136
F2 1.77E-103 7.39E—-163 2.38E—153 8.07E—161 1.38E—-186 1.95E-162 3.18E—-120 1.09E-163 4.56E—01 3.92E-137
F3 8.99E—-109 7.99E—-171 2.29E-162 1.25E-153 3.78E-177 8.82E—-162 2.30E-162 2.23E-162 5.02E-122 2.43E-153
F4 1.39E-96 4.80E—-166 1.70E—-164 4.25E-162 2.37E-106 4.96E—-164 7.20E—-164 1.06E-163 3.33E-163 3.29E-151
F5 5.61E-150 9.08E—162 1.17E-163 5.51E-165 1.00E-180 2.31E-163 4.72E—-158 3.12E-163 2.34E-163 3.06E—94
F6 1.87E—-136 1.42E-172 1.29E-163 2.43E-161 8.97E-177 6.57E—29 1.81E-159 4.57E—-163 2.75E-163 1.96E—112
F7 2.12E-03 2.30E—142 1.17E—-164 1.93E-150 1.39E-60 1.37E-164 3.49E-115 1.13E-164 9.63E—-117 3.59E-54
F8 9.31E-158 1.75E-183 2.98E-108 7.97E-11 2.65E—140 4.05E—145 3.29E-161 3.13E-129 3.33E-160 2.99E-147
F9 1.05E—42 5.37E—186 8.02E—142 7.44E-37 1.27E-03 2.44E—-185 7.26E—47 8.71E—-185 3.41E-21 8.85E—184
F10 2.05E-51 1.26E—-181 1.05E—-181 1.50E-175 3.15E-03 1.85E—-181 1.02E-64 9.70E—182 1.20E—-122 2.53E-159
F11 6.29E—40 3.26E—183 3.64E—182 1.77E-75 7.25E—89 3.21E-182 3.13E-50 1.13E-182 1.00E-182 5.73E—43
F12 7.79E—153 1.39E-168 1.13E-163 4.95E—-180 5.02E-174 4.12E-164 9.63E—151 9.85E—-164 2.70E-163 3.07E-145
F13 1.19E-148 2.33E-177 1.05E—-163 7.42E—-110 1.08E—164 3.61E-163 1.39E-160 3.51E-163 2.01E-162 4.12E—-155
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Table 23
WT for F14-F29 (p>0.05 is displayed in bold).
ROAvs./  HHO SFO EPO SOA SHO SSA WOA MFO MVO GWO
F14 6.13E-159 7.51E—-180 3.77E-168 1.23E-167 1.04E-175 2.79E-10 4.36E—159 2.71E-174 8.91E-143 1.42E-170
F15 1.24E-04 1.54E-163 8.75E-164 1.09E-17 6.77E—-188 1.30E-136 3.35E-99 4.43E-149 2.27E-188  7.82E-164
F16 2.94E-68 2.73E-162 8.31E-164 1.56E—22 2.91E-188 1.49E-05 5.55E—85 1.77E-117 2.02E-188 2.21E-14
F17 4.92E-10 4.83E-180 2.45E-08 2.58E-34 1.40E—-182 6.83E-02 3.80E-75 1.03E-128 2.03E-182  7.60E-70
F18 5.99E-73 1.49E-163 1.10E-44 1.51E-92 5.12E-187 1.04E-08 9.27E-01 3.74E-130 5.12E-187  4.66E-128
F19 2.03E-150 1.01E-161 1.16E-164 1.07E-157 2.85E-188 2.30E-05 1.47E-147 7.25E-146 2.75E-191 8.00E-01
F20 4.67E-158 1.02E—-169 5.47E-165 8.07E-160 8.83E-187 5.49E—06 5.09E-147 2.58E-138 2.88E-188  7.29E-17
F21 4.23E-95 6.57E—185 1.38E-156 1.26E-13 6.68E—165 4.02E-159 3.43E-156 2.99E-127 3.67E-167  9.83E-54
F22 8.59E-133 8.23E-183 8.24E-161 2.46E—83 2.05E-83 9.81E-01 2.29E-83 7.52E-105 1.93E-188 3.68E-68
F23 9.42E—124 1.53E-171 2.01E-162 3.84E-126 1.23E-176 1.99E-03 4.42E-147 4.07E-162 3.57E-78 4.66E-118
F24 6.26E—26 1.52E-170 2.06E—-165 3.79E-182 1.82E-156 4.68E—-25 2.39E-15 4.16E-135 5.70E-175 2.23E-159
F25 4.04E—49 7.19E-185 2.48E-186 2.20E—-124 1.27E-03 6.05E—-14 5.91E-185 1.76E-183 1.34E-21 6.82E-184
F26 4.04E-E—09 1.76E—182 1.02E—-187 6.47E-109 4.33E-04 1.56E-180  2.65E—183 9.63E—181 1.85E-22 1.27E-181
F27 4.66E—36 2.51E-185 3.44E-189 1.03E—48 7.45E—04 7.79E—06 6.27E—-185 1.81E-183 1.23E-20 1.14E-184
F28 3.00E—98 2.45E-181 9.81E-170 4.04E-101 8.10E-178 3.13E-20 5.09E-163 8.42E-134 3.81E-175 2.72E-160
F29 1.08E-16 1.42E-175 1.19E-164 1.66E—-129 9.65E—-173 5.71E-43 6.70E—142 3.00E-126 1.54E-169 1.43E-155
significant advantage in the optimization process of functions F1-F4,
|§_| ranking in the first good position. Can rank second in function F5. In
- b - 13 the function F6, the fourth place. In the functions F7, F8, the conver-

Fig. 10. Schematic of the I-beam (Above: Engineering drawing, Below: 3D).

first 13 test functions in four different dimensions for 30 times and
iterate over 500 generations of AF and STD. The result closest to the AF
standard value is displayed in bold. According to the AF and STD, the
optimal solution can always be found by ROA in F1-4, F9-11 in any
dimension. HHO can be used as the second best algorithm. Since most of
the selected algorithms are up-to-date or well-known, some algorithms
can sometimes find the optimal solution. HHO can generally find the
optimal solution of F5, F12 and F13, which shows the effectiveness of
HHO on complex functions. However, although ROA is not the most
effective, it must be the second best.

In order to visualize the data, Fig. 9 shows the trend of the corre-
sponding fitness function values and box diagram. Since there are many
comparison functions, different markers are selected for differentiation.
As can be seen from the figure, compared with other functions ROA has a

Table 24
Comparison results of I-beam design problem.

gence trend of HHO is similar. There are certain advantages in the
functions F9-F11 and F13. It is second only to HHO in function F12.
Comparing each convergence curve, the probability of falling into local
optimum is small in the iterative process of ROA. Effective updates are
guaranteed both in the early and late iterations, and later fluctuations
prove that the diversity between populations is still very rich. A lower
position represents excellent property for the box diagram in this test. As
it can be seen from the box diagram, the proposed algorithm’s optimize
performance is most stable and its STD is the smallest.

More comprehensive, the complex function F14-F29 was also tested.
The experimental results are shown in Table 16. The closest result to the
standard value is shown in bold. The results show that ROA achieves the
best results in all test functions, and HHO ranks second. In the MM
function (F14-F23), most of the algorithms selected in this paper can
also obtain the optimal solution. The ROA in the CM function can ach-
ieve the minimum value and has obvious advantages.

e Algorithm running time

The running time of the algorithm is directly related to the
complexity of the algorithm and can be used as an intuitive represen-
tation of the complexity. The experimental results are shown in
Table 17, and the minimum value has been indicated by bolding. Among
them the dimension of function F1-F13 is 30. According to the trend of
the mark distribution, it can be determined that the WOA has the
shortest running time, which also corresponds to its effective and
convenient bubble network mode. It can be determined that the STD of
each algorithm runs at the same time, indicating that the algorithm is
stable enough. In order to draw conclusions more intuitively, the data
was further subjected to FT, and the ranking of the running time of the

References Algorithm Optimum variables Optimum weight
b h tw tr

- ROA 50 80 1.7600 5.0000 0.0059

(Shadravan et al., 2019) SFO 50 80 1.7637 5.0000 0.00662584

(Seyedali, 2015a) MFO 50 80 1.7647 5.0000 0.0066259

(Seyedali et al., 2017) SSA 50 80 1.76470587 5.0000 0.006625981

(Wang, 2003) ARSM 37.05 80 1.71 2.31 0.0157

(Wang, 2003) IARSM 48.42 79.99 0.90 2.40 0.1310

(Gandomi, Yang, & Alavi, 2013) CS 50 80 0.9 2.321675 0.0130747

(Cheng & Prayogo, 2014) SOS 50 80 0.9 2.32179 0.0130741

*The best value is arranged from top to bottom, from small to large.
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Fig. 11. Schematic of the welded beam (Above: Engineering drawing,
Below: 3D).

algorithm was obtained, as shown in Table 18. From the results, WOA
ranked first, ROA ranked eighth, and HHO ranked ninth. Within the
allowable range, it can be argued that although ROA is not the fastest
algorithm, ROA can get the most comprehensive excellence at the
expense of a certain running time.

3.5. Statistical analysis

Further WT is performed for the above fitness function values to
prove that the ROA results are significantly different from other algo-
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4. ROA for classical engineering problems

The effectiveness of a good algorithm lies in its application. ROA has
shown certain advantages in different types of functions in the previous
section. Next, five engineering problems were selected for further
testing. They are: I-beam design problem, Welded beam design problem,
Pressure vessel design problem, Three-bar truss design problem, Rolling
element bearing problem. In this section, In this section, a detailed
introduction to all engineering issues, including text descriptions and
formula modeling are provided. For the sake of simplicity, all problems
are implemented in MATLAB through the barrier penalty function. The
results obtained by ROA and the corresponding results of different al-
gorithms in the relevant literature are listed in the table at the end of
each engineering problem, which is convenient for comparison obser-
vation. The ROA runs independently for each project 30 times, with a
selected remora population of 30 and an iteration of 500. Finally, make a
corresponding evaluation for different issues.

4.1. I-beam design problem

This problem is one of the well-known structural optimization
problems. I-beam is usually made of structural steel and is a section steel
with a cross-sectional shape of I-shaped, which is commonly used in
construction and civil engineering. Vertical deflection value is a very
important parameter in this problem. The smaller the value, the more
precise the structure of the I-beam. This problem has several structural
parameters such as section width (b), section height (h), web thickness
(tw) and flange thickness (t;). The composition of different structures and
the 3D renderings are shown in Fig. 10. Mathematically model the
structure of the I-beam, establishing the objective function, and finding
the minimum value of the objective function. The conditions of the
corresponding penalty function and the range of related parameters are
as follows:

: -
rithms. The WT results of F1 - F13 are recorded by Tables 19-22, and Consider X =l x x5 xu]=[pbht g
significant difference rates for the different dimensions are 100%, Minimize £(F) = 5000
97.67%, 99.23%, and 99.23%. The WT results of F14 - F29 are recorded tw(h—2t)° . bt + 2Bt (h - tf>2
by Table 23, and significant difference rate for the different dimensions 12 6 2
. . . . i eva
is 96.92%. It can be considered that ROA has significant gaps compared Subject to 8(x) = 2bt, + tu (h— 2t)<0
with other algorithms in any dimension and different modes. Variable range 1891 Szg
. s X2 <
In summary, ROA can be considered to have strong competitiveness 2
in many novel and excellent algorithms. (continuied on next page)
Table 25
Comparison results of the welded beam design problem.
References Algorithm Optimum variables Optimum weight
h 1 t b
- ROA 0.200077 3.365754 9.011182 0.206893 1.706447
(Seyedali, 2015a) MFO 0.2057 3.4703 9.0364 0.2057 1.72452
(Kaveh & Mahdavi, 2014) CBO 0.205722 3.47041 9.037276 0.205735 1.724663
(Mahdavi, Fesanghary, & Damangir, 2007) IHS 0.20573 3.47049 9.03662 0.2057 1.7248
(Seyedali et al., 2014) GWO 0.205676 3.478377 9.03681 0.205778 1.72624
(Seyedali et al., 2015) MVO 0.205463 3.473193 9.044502 0.205695 1.72645
(Coello Coello and Mezura, 2002) Coello and Montes 0.205986 3.471328 9.020224 0.206480 1.72822
(Seyedali & Andrew, 2016) WOA 0.205396 3.484293 9.037426 0.206276 1.730499
(He & Wang, 2007) CPSO 0.202369 3.544214 9.048210 0.205723 1.73148.
(Kaveh & Khayatazad, 2012) RO 0.203687 3.528467 9.004233 0.207241 1.735344
(Coello Coello, 2002) Coello 0.208800 3.420500 8.997500 0.2100 1.74831
(Deb, 2000) GA 0.1829 4.0483 9.3666 0.2059 1.82420
(Esmat et al., 2009). GSA 0.182129 3.856979 10.00000 0.202376 1.879952
(Lee & Geem, 2005) HS 0.2442 6.2231 8.2915 0.2443 2.3807
(Ragsdell & Phillips, 1976) Approx 0.2444 6.2189 8.2915 0.2444 2.3815
(Siddall, 1972) Siddall 0.2444 6.2189 8.2915 0.2444 2.38154
(Ragsdell & Phillips, 1976) David 0.2434 6.2552 8.2915 0.2444 2.3841
(Ragsdell & Phillips, 1976) Ragsdell 0.2455 6.1960 8.2730 0.2455 2.38594
(Carlos & Coello, 2000) GA 0.2489 6.1730 8.1789 0.2533 2.43312
(Ragsdell & Phillips, 1976) Simplex 0.2792 5.6256 7.7512 0.2796 2.53073
(Ragsdell & Phillips, 1976) Random 0.4575 4.7313 5.0853 0.6600 4.11856

*The best value is arranged from top to bottom, from small to large.
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Fig. 12. Schematic of the pressure vessel (Above: Engineering drawing,
Below: 3D).

(continued)
Consider X =[x x2 x3 x4]=[b h t t]
(continued on next column)
Table 26

Comparison results of the pressure vessel design.
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(continued)

Consider X =[x1 x2 x3 x4]=[b h & ¢t
0.9<x3<5
0.9<x4<5

The experimental results of the I-beam design problem are recorded in
Table 24. At the same time, the data of different optimization algorithms
for the design problem of I-beams are also entered in the table, and
relevant literatures are also given.

The results show that ROA has great advantages compared to other
algorithms and can achieve the ability to minimize vertical deflection.

4.2. Welded beam design problem

As it named, this problem deals with designing a welded beam to
minimize the fabrication cost. The minimization process is subject to
some constraints such as shear stress, bending stress in the beam,
buckling load on the bar, end deflection of the beam, and side con-
straints. This optimum design has four parameters: thickness of weld (h),
length of the clamped bar (1), height of the bar (t), and thickness of the
bar (b) as shown in Fig. 11. The mathematical formulation is also
illustrated as follows:

Consider X =[x1 x2 x3 x4]=[h Il t b]
Minimize £(X) = 1.10471x2x; + 0.0481 Lxsxs(14.0 + x;)
Subject to g1(X) =1(X) - Tmax<O

(continued on next page)

References Algorithm Optimum variables Optimum weight
Ts Ty R L
ROA 0.729588 0.222651 40.432340 198.553762 5311.917579

(Dhiman and Kumar, 2017) SHO 0.778210 0.384889 40.315040 200.0000 5885.5773
(Seyedali et al., 2014) GWO 0.812500 0.434500 42.089181 176.758731 6051.5639
(Kaveh & Talatahari, 2010) ACO 0.812500 0.437500 42.103624 176.572656 6059.0888
(Seyedali, 2015a) MFO 0.812500 0.437500 42.098445 176.636596 6059.7143
(Li et al., 2007) DE 0.812500 0.437500 42.098411 176.637690 6059.7340
(Seyedali & Andrew, 2016) WOA 0.812500 0.437500 42.0982699 176.638998 6059.7410
(Efrén & Carlos, 2008) ES (Coello and Montes) 0.812500 0.437500 42.098087 176.640518 6059.7456
(Carlos & Efrén, 2002) GA (Coello and Montes) 0.812500 0.437500 42.098087 176.640518 6059.7456
(Seyedali et al., 2015) MVO 0.812500 0.437500 42.0907382 176.738690 6060.8066
(He and Wang, 2007) PSO 0.812500 0.437500 42.091266 176.746500 6061.0777
(Carlos & Coello, 2000) GA (Coello) 0.812500 0.434500 40.323900 200.0000 6288.7445
(Kalyanmoy, 1997) GA (Deb and Gene) 0.937500 0.500000 48.329000 112.679000 6410.3811
(Mahdavi et al., 2007) IHS 1.125000 0.625000 58.29015 43.69268 7197.730
(Kannan & Kramer, 1994) Lagrangian Multiplier (Kannan) 1.125000 0.625000 58.291000 43.69000 7198.0428
(Sandgren, 1990) Branch-bound (Sandgren) 1.125000 0.625000 47.700000 117.7010 8129.1036
(Esmat et al., 2009). GSA 1.125000 0.625000 55.9886598 84.4542025 8538.8359

*The best value is arranged from top to bottom, from small to large.

Fig. 13. Schematic of the Three-bar truss design (Left: 3D, Right: Engineering drawing).
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Table 27 (continued)
Comparison results of the Three-bar truss design problem. Consider X =[x x2 x3 xa]=[h L t b
References Algorithm Optimum variables Vovi’lt;r}llltum (%) = 0(F) - onex<0
A Ay 83(X) = 8(X) ~Omax<0
84(X) =x1 —x4<0
ROA 0.80047516  0.265380986  186.6524003 Z =
(Jung-Fa, 2005)  Tsa 0.788 0.408 263.68 gS(i ) =P—Pe(x)<0
(Hui, Zixing, & PSO-DE 0.7886751 0.4082482 263.8958433 8(X) =0.125-x<0
Yong, 2010) g(X) = 1.10471x}x, + 0.04811x3x4(14.0 + x2) —5.0<0
(Ali et al, 2019)  HHO 0.788662816  0.40828313  263.8958434 Variable range 0.1, <2
(Seyedali, ALO 0.7886618 0.4082831 263.8958434 0.1<x,<10
2015b) 0.1<x3<10
(Seyedalietal,  SSA 0.78866541  0.40827578  263.8958434 0.1<x4<2
2017) Where x: B
(Min, Wenjian, ~ DEDS 078867513  0.40824828  263.8958434 o(X) = /(@) + 207+ ()
& Xufa, 2008) , P ., MR X2
(Seyedali etal,  MVO 078860276  0.40845307  263.8958499 T Voot MRS
2015) R
(Alietal, 2013) MBA 0.7885650 0.4085597 263.8958522 R=\Z2+(F5)
(Shahrzad, GOA 0.78889755  0.40761957  263.8958814 2k ix
Seyedali, & =2 VBl + ()

Andrew, 3 3
2017) o(F) = 2 0(F) = p—alF) = 2 5(F) = g
(Shadravan SFO 0.7884562 0.40886831  263.8959212 e X % B

6
et al., 2019) 4.013E\ /@ I3
(Seyedali, MFO 0.7882447 0.4094669 263.8959796 P.(%) = T% a- % \/%)
2015a) ) )
cs 0.78867 0.40902 263.9716 P =60000b,L = 14in,E = 30 x 1,6"5”
(Tapabrataand  Ray and 0.795 0.395 264.3 Tmax = 13600psi, omex = 30000psi
Pankaj, 2001) Sain
*The best value is arranged from top to bottom, from small to large. This problem has also tested and the results are shown in the Table 25. It

is shown that the proposed algorithm can find the lowest cost design.
Thus, it is reasonable to think that the proposed algorithm is feasible in

D h
do
-] D
d,
0
e
B,
Fig. 14. Schematic of the rolling element bearing (Left: 3D, Right: Engineering drawing).
Table 28
Comparison results of the rolling element bearing problem.
References (Shantanu, Rajiv, & Shivashankar, (Ravipudi et al., (Poonam & Vimal, (Ali et al., (Dhiman & Kumar,
2007) 2011) 2016) 2019) 2017)
Algorithm GA4 TLBO PVS HHO SHO ROA
Optimum Dy, 125.71910 125.71910 125.71906 125.00000 125.00000 127.41090
variables Dy 21.423000 21.425590 21.425590 21.000000 21.407320 22.065953
Z 11.000000 11.000000 11.000000 11.092073 10.932680 11.902282
fi 0.5150000 0.5150000 0.5150000 0.5150000 0.5150000 0.5249904
fo 0.5150000 0.5150000 0.5150000 0.5150000 0.5150000 0.5252150
Kimin 0.4159000 0.4242660 0.4004300 0.4000000 0.4000000 0.4077870
Kamax 0.6510000 0.6339480 0.6801600 0.6000000 0.7000000 0.6116139
€ 0.3000043 0.3000000 0.3000000 0.3000000 0.3000000 0.3058120
e 0.0223000 0.0688580 0.0799900 0.0504740 0.0200000 0.0259788
I3 0.7510000 0.7994980 0.7000000 0.6000000 0.6000000 0.6116873
Optimum weight 81843.30 81859.74 81859.741 83011.883 85054.532 87971.853

* The best values are arranged from left to right, from small to large.
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solving such problems.

4.3. Pressure vessel design

The objective of this problem is to minimize the total cost of the
vessel with four variables: Thickness of the shell (Ts). Thickness of the
head (Th). Inner radius (R). Length of the cylindrical section without
considering the head(L). And the optimum design is subjected to con-
straints on material, forming, and molding of a cylindrical vessel. The
approximate shape and parameter distribution are shown in Fig. 12. The
mathematical formulation of this optimization is as follows:

Table 26 Illustrates the results of ROA and the comparison algorithm.
As it represents, the proposed algorithm can reach the lowest cost
design. Therefore, it is hopefully that the proposed algorithm is suitable
for such problems.

—

Consider X =[x1 x2 x3 x4] =[Ts Ty R L]
Minimize F(X) = 0.6224x1x3%4 + 1.7781x2x} + 3.1661x3x4 + 19.84x3x3
Subject to g1(x) = —x; + 0.0193x3<0
2(X) = —x3 + 0.00954x3<0
8(X) = —mxdxs 7§nx§ + 1296000<0
84(X) = x4 —240<0
Variable range 0<x<99
0<x2<99
10<x3<200
10<x,<200

4.4. Three-bar truss design problem

As one of the most researched work cases, it is often used by various
algorithms for testing. This task is also a minimization problem, mainly
to find the minimum of the total weight of the structure. Fig. 13 illus-
trates the shape of the truss and the associated forces on the structure.
The figure contains two parameters: Area of strip 1 = Area of strip 3, and
Area of strip 2. This problem can be mathematically described as
follows:

Table 27 shows the detailed results of other algorithms and proposed
ROA. Based on the results in Table 27, ROA is significantly better than
other optimizers, and ROA is observed to be exceptionally competitive.

4.5. Rolling element bearing problem

Different from the previous problems, this engineering problem is
the maximum value of the dynamic bearing capacity of the solution
target. A total of 10 variables are included, a schematic of which is
shown in Fig. 14. The test case is expressed as follows:

Table 28 lists the results of the ROA and other optimizers. As can be
seen from Table 28, the proposed ROA has detected the best solution
with the greatest cost and made substantial progress compared to other
algorithms.

5. Conclusion

A new type of bionic optimization algorithm ROA was proposed. The
main source of inspiration comes from remora. Simulations were carried
out for their living habits of parasitic feeding on different hosts. Two
types of hosts-whales and swordfish, which exhibit the best effect and
the most characteristic movement mode are selected to update the
switch of different modes. Further, the remora factor is proposed to
facilitate the adjustment of local renewal. 29 unconstrained benchmark
problems such as unimodal functions and multimodal function combi-
nation functions were used to evaluate the performance of the ROA. To
highlight the effectiveness of the proposed algorithm through compar-
ison, one or two of the highly respected optimizers proposed in the last
five years are selected annually. The exploitative, exploratory and local
optimal avoidance capabilities of ROA are studied in depth. In addition,
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four restricted engineering tasks for minimization and one engineering
task for maximum value were selected for the comprehensive develop-
ment of ROA. The overall experimental results show that ROA has sig-
nificant competitiveness in many state-of-the-art algorithms.

In the future work. the ROA will be refined to simulate a valid ROA
framework and provide opportunities for more hosts. Furthermore, ROA
will also be applied for the optimization of various engineering problems
such as image segmentation, feature selection, and multi-objective
problems.
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