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The cheetah optimizer: 
a nature‑inspired metaheuristic 
algorithm for large‑scale 
optimization problems
Mohammad Amin Akbari1, Mohsen Zare2, Rasoul Azizipanah‑abarghooee3, 
Seyedali Mirjalili4,5 & Mohamed Deriche1*

Motivated by the hunting strategies of cheetahs, this paper proposes a nature-inspired algorithm 
called the cheetah optimizer (CO). Cheetahs generally utilize three main strategies for hunting 
prey, i.e., searching, sitting-and-waiting, and attacking. These strategies are adopted in this work. 
Additionally, the leave the pray and go back home strategy is also incorporated in the hunting process 
to improve the proposed framework’s population diversification, convergence performance, and 
robustness. We perform intensive testing over 14 shifted-rotated CEC-2005 benchmark functions to 
evaluate the performance of the proposed CO in comparison to state-of-the-art algorithms. Moreover, 
to test the power of the proposed CO algorithm over large-scale optimization problems, the CEC2010 
and the CEC2013 benchmarks are considered. The proposed algorithm is also tested in solving one of 
the well-known and complex engineering problems, i.e., the economic load dispatch problem. For all 
considered problems, the results are shown to outperform those obtained using other conventional 
and improved algorithms. The simulation results demonstrate that the CO algorithm can successfully 
solve large-scale and challenging optimization problems and offers a significant advantage over 
different standards and improved and hybrid existing algorithms. Note that the source code of the CO 
algorithm is publicly available at https://​www.​optim-​app.​com/​proje​cts/​co.

Background.  Recently, solving optimization problems have become a challenging and exciting topic in most 
research area. Decision-making problems that are overgrowing can be defined as optimization problems. An 
optimization problem includes one or more objective functions, decision variables, and constraints to be mini-
mized or maximized1. Many deterministic approaches, such as linear programming, Newton methods, quad-
ratic programming, dynamic programming, simplex method, gradient method, etc., are the well-known classical 
methods to solve optimization problems2,3. These algorithms robustly result in the same solution for a given 
optimization problem with an identical initial starting point. Although such techniques can find optimal solu-
tions in a reasonable time, they need the objective function and constraints to be convex and derivable4. These 
cause the deterministic algorithms to fall into locally optimal solutions, which is the main shortcoming of such 
methods in solving real-world problems. This defect becomes more prominent as the dimension of the problem 
increases. Therefore, stochastic methods for dealing with it have been developed5–7. These algorithms intrinsi-
cally neglect the characteristics of the objective functions and constraints, so they treat the problem as a black 
box. Another advantage of the most metaheuristic algorithms is their simplicity.

How metaheuristics solve a problem is similar. Evolve a set of random solutions in an iterative procedure and 
keep a good balance between exploration and exploitation phases8. To this end, the search process is divided 
into two stages exploration and exploitation9. The former assists an algorithm to search globally, and the lat-
ter helps it locally search around the probable region obtained by the former phase10. The common feature in 
metaheuristic algorithms is their randomness which can help them to avoid local solutions. However, these 
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features cause metaheuristic algorithms not to guarantee the global solution. Furthermore, they may result in 
different solutions in each run11.

According to the No Free Lunch (NFL) theorem12, there is no unique algorithm to solve all optimization 
problems effectively. This theorem motivates researchers to introduce new algorithms to be applied in various 
fields of study13. Many recently developed nature-inspired metaheuristic algorithms evidenced this theorem and 
encouraged us to introduce a novel nature-inspired algorithm based on cheetahs’ hunting strategies.

Literature review.  Metaheuristic algorithms can be categorized into two main classes, single-solution-
based and multiple-solution-based (or population-based). The most popular single-solution-based metaheuris-
tic algorithm is simulated annealing (SA)14. This algorithm’s process starts with a random candidate solution (a 
population) and then moves and improves it in the promising search space in an iterative manner to find the 
superior solution. However, multiple-solution-based algorithms implement more than one random candidate 
solution to enhance the speed and the chance to avoid local optima entrapment.

Population-based metaheuristic algorithms can be classified into evolutionary, physics, chemistry, and swarm-
based algorithms15. Most popular evolutionary-based metaheuristic algorithms are genetic algorithm (GA)16, 
genetic programming (GP)17, evolutionary programming (EP)18, evolutionary strategy (ES)19, biogeography-
based optimizer (BBO)20 and differential evolution (DE)21. The basis of population improvement and movement 
in these algorithms is derived from the concept of evolution in nature.

Physics-based metaheuristic algorithms are another type of population-based optimization algorithm. The 
improvement and movement of the population through search space in these algorithms is made by directly 
deploying the known laws of physics. These rules include the laws of mechanics, relativity, gravity, electrodynam-
ics, electromagnetism, optics, etc.15. The most famous of these algorithms only cover those which have at least 
100 citations, as measured by Google Scholar (collected in March 2021) are, respectively: gravitational search 
algorithm (GSA)22, big bang-big crunch (BB-BC)23, charged system search (CSS)24, the electromagnetism-like 
mechanism (EM)25, water cycle algorithm (WCA)26, extremal optimization (EO)27, ray optimization (RO)28, 
central force optimization (CFO)29, intelligent water drops (IWD)30, chaos optimization algorithm (COA)31, 
galaxy-based search algorithm (GBSA)32 and river formation dynamics algorithm (RFDA)33.

Another class of population-based metaheuristic algorithms is chemistry-based algorithms. These algorithms 
are created based on molecules’ chemical reactions and features. The most popular chemistry-based algorithms 
are artificial chemical reaction optimization algorithm (ACROA)34, gases Brownian motion optimization 
(GBMO)35 and artificial chemical process (ACP)36.

The most popular class of population-based metaheuristic algorithms for researchers is swarm-based algo-
rithms. This type of algorithm is a model of the behavior and social intelligence of a group of living things, such 
as birds, ants, swarms, schools and so on15. Some of the most popular algorithms in this category are particle 
swarm optimization (PSO) in 199537, ant colony algorithms (ACO) in 199138, artificial bee colony (ABC) in 
200739, Cuckoo Search (CS) in 200940, grey wolf optimizer (GWO) in 201441, firefly algorithm (FA) in 200942, 
bacterial foraging algorithm (BFA) in 200243, whale optimization algorithm (WOA) in 201644, bat algorithm 
(BA) in 201045, Shuffled frog leaping algorithm (SFLA) in 200346, bees algorithm (BA) in 200647, moth-flame 
optimization (MFO) in 201548, krill herd (KH) in 201249, ant lion optimizer (ALO) in 201550, fruit fly optimiza-
tion algorithm (FOA) in 201251, and glowworm swarm optimization (GSO) in 200952.

Motivation.  Some swarm intelligence algorithms are based on animals’ hunting and foraging behaviors in 
nature. Some hunters can hunt the prey individually or in a herd with some numbers, and other members may 
not participate in the hunting process. Furthermore, in some cases, a small number of hunters can cover a large 
hunting area. These special features of the cheetah for hunting motivated us to study its behavior more carefully 
and base it on the development of an optimization algorithm. The hunting processes are modeled in two simple 
sit and wait beside the attacking mode strategies. Indeed, despite other methods which use some complicated 
equations in the evolution process, the cheetah optimizer (CO) employs some simple techniques, while the 
hunting strategies help increase the algorithm’s effectiveness. Sitting and waiting to make the prey available, 
back to home in case of unsuccessful hunting process, return to last successful hunting if the prey not found for 
sometimes. These are the main strategies in CO. The algorithm performance confirms that the hunting process’s 
characteristics have been modeled in the proposed CO.

Contributions.  The main contributions of this paper are listed as follows:

1.	 A new population-based metaheuristic called CO algorithm is investigated, formulated, and tested on dif-
ferent benchmark functions.

2.	 Since the hunting processes of cheetahs, i.e., search, sit-and-wait, attack, and leave the prey and go back 
home, are modeled wholly and simply; thus, the number of initial populations are decreased dramatically 
in small to large scale optimization problems.

3.	 The proposed CO method needs a small number of equations while the hunting strategies try to model 
the hunting process. These strategies create a suitable trade-off between the exploration and exploitation 
searches and prevent premature convergence in the different optimization problems. Therefore, the concepts 
of proposed strategies can be used to enhance the performance of other metaheuristic algorithms effectively.

It should be noted that there are existing algorithms in the literature inspired by cheetah53–55. In53, it has 
been tried to use the cheetahs’ feature in the chasing mode as an optimization algorithm, but the model is not 
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well shown conceptually and mathematically. In54, an algorithm based on the hunting behavior of cheetahs was 
introduced. The model has been established based on GWO and modified to adapt to the group hunting behavior 
of cheetahs, such as leadership hierarchy and communication between teammates during the hunting. However, 
these algorithms have not been able to make good use of all the features and strategies of cheetahs during hunting 
and model them mathematically. This article tries to cover these shortcomings well to present a more realistic 
behavior of cheetahs in creating a robust meta-heuristic algorithm.

The rest of this paper is organized as follows. The inspiration for the suggested method is briefly addressed 
in “Inspiration” section. “Mathematical model and algorithm” section presents the proposed CO algorithm’s 
mathematical model. “Simulation results” section presents experimental findings and discussions for various 
benchmark test functions and economic load dispatch (ELD) problems. Finally, concluding remarks and future 
work are summarized in “Conclusion” section.

Inspiration
Cheetah (Acinonyx jubatus) is the primary cat breed and fastest land animal living in the central areas of Iran 
and Africa56. The cheetah’s speed can reach over 120 km per hour. The cheetahs’ agility and speed are their physi-
cal characteristics like a long tail, long and thin legs, lightweight and flexible spine. Cheetahs are quick animals 
capable of stealthy movement, fast returning during predation, and specific spotted coats; however, these visual 
predators cannot maintain their high-speed action for a long time. Therefore, the chasing must be less than half 
of a minute57.

Moreover, their speed significantly decreases from 93 km/h or 58 mph to 23 km/h 14 mph only in three strides 
after catching the prey. Due to the mentioned limitation of cheetahs in maintaining their speed, they precisely 
observe the environment after staying on small branches or hills to identify their prey. Furthermore, these big 
cats can effortlessly blend into the high and dry grass due to their specific coats58.

These predators usually hunt gazelles, specifically Thomson’s gazelles, impalas, antelopes, hares, birds, rodents, 
and calves of more fabulous herd animals. First, they move slowly toward the prey with a crouched posture to 
be hidden and reach the minimum distance, stopping hidden and waiting for the prey to approach the predator. 
This is because they stop hunting if the prey observes the predator. The mentioned minimum distance is almost 
60–70 m or 200–230 ft; however, it is determined to be 200 m or 660 ft if they cannot stay hidden appropriately. 
Specifically, the pursuit duration is 60 s with a mean distance of 173 m or 568 ft to 559 m or 1834 ft. Then, the 
prey’s balance is lost after their rump is beaten with the cheetah’s forepaw, and finally, the predator brings down 
the prey using too much force and turns it, which makes the prey try to escape59. Cheetahs’ muscular tails’ back 
and forth movement also helps them achieve sharp turns60. Generally, hunting the animals that move far from 
their herds or have less caution is much easier61,62. It should be noted that there are various determinants asso-
ciated with predation, including maturity, gender, the number of predators, and the carelessness of prey. Also, 
coalitions or mothers with cubs tend to hunt more giant animals successfully.

According to the biological investigations, it has been found that cheetahs have remarkable spinal flexibility 
and long tails that lead to their physical balance. Moreover, they have collarbone-separated shoulder blades that 
facilitate the movement of the shoulders. All the characteristics mentioned earlier make these big cats considered 
remarkable predators; however, not all the predations are successful.

Mathematical model and algorithm
When a cheetah is patrolling or scanning its surroundings, it is possible to detect prey. Seeing the prey, the 
cheetah may sit in its place and wait until the prey gets closer to it and then starts the attack. The attack mode 
includes rushing and capturing phases. The cheetah may give up the hunting for several reasons, such as its 
energy limits, fast prey fleeing, etc. Then, they may go back home to rest and start new hunting. By assessing the 
prey, his/her condition, area and distance to the prey, the cheetah may choose one of these strategies, as depicted 
in Fig. 163. Overall, the CO algorithm is based on intelligently utilizing these hunting strategies during hunting 
periods (iterations).

•	 Searching: Cheetahs need to search, including scanning or active search, in their territories (search space) or 
the surrounding area to find their prey.

•	 Sitting-and-waiting: After the prey is detected, but the situation is not proper, cheetahs may sit and wait for 
the prey to come nearer or for the position to be better;

•	 Attacking: This strategy has two essential steps:

•	 Rushing: When the cheetah decides to attack, they rush toward the prey with maximum speed.
•	 Capturing: The cheetah used speed and flexibility to capture the prey by approaching the prey.

•	 Leave the prey and go back home: Two situations are considered for this strategy. (1) If the cheetah is unsuc-
cessful in hunting the prey, it should change its position or return to its territory. (2) In cases with no suc-
cessful hunting action in some time interval, it may change its position to the last prey detected and searched 
around it.

The mathematical models of the hunting mentioned above strategies are provided in detail in the following 
sections. Then, the CO is outlined.
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Search strategy.  Cheetahs seek prey in two ways; either scan the environment while sitting or standing or 
actively patrols the surrounding area. Scanning mode is more suitable when the prey is dense and grazing while 
walking on the plains. On the other hand, choosing an active mode that needs more energy than the scan mode 
is better if the prey is scattered and active. Therefore, during the hunting period, depending on the prey’s condi-
tion, the coverage of the area, and the condition of the cheetahs themselves, a chain of these two search modes 
may be selected by the cheetah. To mathematically model this searching strategy of cheetahs, let Xt

i,j denote the 
current position of cheetah i (i = 1, 2, …, n) in arrangement j (j = 1, 2, …, D), where n is the number of cheetahs 
population and D is the dimension of the optimization problem. Indeed, each cheetah experiences different situ-
ations dealing with various prey. Each prey is a location of a decision variable corresponding to the best solution 
while the cheetah’s states (other arrangements) construct a population.

Then, the following random search equation is proposed for updating the new position of cheetah i in each 
arrangement based on their current position, and an arbitrary step size as follows:

where Xt+1
i,j  and Xt

i,j are the next and the current positions of cheetah i in arrangement j, respectively. Index t 
denotes the current hunting time, and T is the maximum length of hunting time. r̂−1

i,j  and αt
i,j are the randomiza-

tion parameter and step length for cheetah i in arrangement j, respectively. The second term is the randomization 
term, where the randomization parameter r̂i,j is normally distributed random numbers from a standard normal 
distribution. The step length αt

i,j > 0 in most cases can be set at 0.001× t/T as cheetahs are slow-walking search-
ers. In encountering other hunters (enemies), the cheetahs may escape rapidly and change their directions. To 
reflect such behavior as well as near/far destination search mode, the random number r̂−1

i,j  is used here for each 
cheetah in different hunting periods. In some cases, αt

i,j can be adjusted by the distance between the cheetah i 
and his/her neighborhood or leader. The position of a cheetah (named leader) in each arrangement of cheetahs 
is updated by assuming αt

i,j equal to 0.001× t/T multiplied by the maximum step size (here, we consider it 
based on the variable limits, i.e., the upper limit minus the lower limit). For other members, αt

i,j in each cheetah’s 
arrangement is calculated by multiplying the distance between the position of cheetah i and a randomly selected 
cheetah. Figure 2a illustrates the search strategy.

There is a distance between the leader and the prey (i.e., the best solution in this paper). Thus, the leader posi-
tion is selected based on the prey position by changing some variables in the best solution. It is to be expected 
that the leader and the prey would be closer by the time unless the hunting time is terminated, leading to an 
updated leadership position. It should be noted that the step size of the cheetah is entirely random, and the CO 
would consider this. Therefore, the CO can effectively solve the optimization problems correctly by utilizing any 
randomization parameter and random step size, i.e.,r̂−1

i,j  and αt
i,j.

Sit‑and‑wait strategy.  During the searching mode, the prey may expose to a cheetah’s field of vision. 
In this situation, every movement of the cheetah may make the prey aware of his/her presence and lead to the 
escape of the prey. To avoid this concern, the cheetah may decide to ambush (by lying on the ground or hiding 
among the bushes) to get close enough to the prey. Therefore, in this mode, the cheetah remains at his/her posi-
tion and waits for the prey to come nearer (see Fig. 2b). This behavior can be modeled as follows:

(1)Xt+1
i,j = Xt

i,j + r̂−1
i,j .α

t
i,j

(2)Xt+1
i,j = Xt

i,j

Figure 1.   Hunting behavior of cheetahs: (a) searching for prey (scanning mode), (b) sitting-and-waiting 
(hiding), (c) rushing and (d) capturing.
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where Xt+1
i,j  and Xt

i,j are the updated and current positions of cheetah i in arrangement j, respectively. This strategy 
requires the CO algorithm not to change all cheetahs simultaneously in each group to increase the success of 
hunting (finding a better solution) and hence can assist it in avoiding premature convergence.

Attack strategy.  Cheetahs use two crucial factors to attack their prey: speed and flexibility. When a chee-
tah decides to attack, he/she rushes to the prey at full speed. After a while, the prey notices the cheetah’s attack 
and begins to flee. The cheetah rapidly pursues the prey in the interception path with its keen eyes, as shown in 
Fig. 2c. In other words, the cheetah follows the position of the prey and adjusts its direction of movement in such 
a way as to block the prey’s way at one point. Because the cheetah has reached a short distance from the prey at 
maximum speed, the prey must escape and change its position suddenly to survive, as shown in Fig. 2d, i.e., the 
next position of the cheetah is near the last position of prey. Also, as shown in Fig. 2d, probably, the one cheetah 
doesn’t participate in an attacking strategy that completely matches the natural hunting of cheetahs. The cheetah 
uses speed and flexibility to capture the prey in this phase. In a group hunting method, each cheetah may adjust 
his/her position based on the fleeing prey and the position of the leader or neighborhood cheetah. Simply, these 
all attacking tactics of cheetahs are mathematically defined as follows:

where Xt
B,j is the current position of the prey in arrangement j. In other words, it is the current best position of 

the population. ři,j and βt
i,j are respectively the turning factor and interaction factor associated to the cheetah 

i in arrangement j. Xt
B,j is used in (3) because, in attacking mode, the rushing strategy of cheetahs by utilizing 

maximum speed helps them get as close as possible to the prey’s position in a short time. Hence, this paper 
calculates the new position of the i-th cheetah in attacking mode based on the prey’s current position. In the 
second term, the turning factor βt

i,j reflects the interaction between the cheetahs or between a cheetah and leader 
in the capturing mode. Mathematically, this factor can be defined as the difference between the neighborhood 
cheetah’s position, Xt

k,j ( k  = i ), and the i-th cheetah’s position, Xt
i,j . The turning factor ři,j is a random number 

that is equal to |ri,j|exp(ri,j/2)sin
(

2πri,j
)

 in this paper. ri,j is normally distributed random numbers from a standard 
normal distribution. This factor reflects the sharp turns of the cheetahs in the capturing mode.

Hypotheses.  Based on the behaviors of cheetahs in haunting, the following assumptions are considered in 
the proposed CO algorithm:

1.	 Each row of the cheetahs’ population is modeled as a cheetah in different states. Each column represents 
a specific arrangement of cheetahs concerning the prey (best solution of each decision variable). In other 
words, cheetahs follow their prey (best point of a variable). To find the best optimal solution, the cheetahs 
require success in capturing the prey in each arrangement. The performance of each cheetah is evaluated 
by the value of fitness function for that cheetah in all arrangements. The higher performance of a cheetah 
indicates a higher probability of hunting success.

(3)Xt+1
i,j = Xt

B,j + ři,j .β
t
i,j

(a) (b)

(c) (d)

Search space

Search space

Search space

Search space

̂
−

Figure 2.   Graphical information of CO’s strategies.
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2.	 In a real group hunting process, the reactions of all cheetahs are different from others. Indeed, in every 
arrangement, a cheetah may be in attacking mode while the other cheetahs may be in one of searching, 
sitting-and-waiting, and attacking modes. Also, the cheetahs’ energy is independent of the prey. Modeling 
each decision variable as an arrangement of cheetahs, besides using the random parameters r̂−1

i,j  and ři,j 
results in preventing premature convergence even in an extremely large evolution process. These random 
variables can be considered an energy source for cheetahs during the hunting process. These two critical 
ideas have been neglected in previous hunting evolutionary methods that significantly affect optimization 
performance. In the attacking strategy, the cheetah’s direction depends on the prey, but the cheetah move-
ments have completely random behavior in the searching strategy.

3.	 The behaviors of cheetahs during the searching or the attacking strategies are assumed to be completely 
random, as depicted in Fig. 2 by the red dash-line, but during the rushing and the capturing mode, the prey 
scape in a sharp changing direction, as depicted in the last movement shown in Fig. 2d. The randomization 
parameter r̂i,j and the turning factor ři,j model these random movements. Changing the step length αt

i,j and 
interaction factor βt

i,j with completely random variables also lead to a suitable optimization process. These 
confirm that the hunting process is modeled precisely.

4.	 In the hunting process, the searching or the attacking strategy is deployed randomly, but the searching 
strategy becomes more likely over time due to decreasing the cheetah’s energy level. In some cases, the first 
steps are devoted to the search strategy, while the attack strategy is selected for large values of t to achieve 
better solutions. Assuming r2 and r3 as uniformly random numbers from [0, 1]. If r2 ≥ r3 the sit and wait 
strategy is selected; otherwise, one of the searching or the attacking strategies is selected based on a random 
value H = e2(1−t/T)(2r1 − 1) where r1 is a uniformly random number from [0, 1]. By tuning r3 , the switch-
ing rate between the sit-and-wait strategy and two other strategies can be controlled. For instance, based on 
our experiences, if the objective function is too sensitive to the changes in some decision variables (this can 
reflect the sensitivity of prey to the movement of the cheetah), the value of r3 can be selected as small random 
numbers. This situation increases the sit-and-wait mode to be chosen by a cheetah, decreasing the rate of 
changing decision variables. Hence, the success probability of hunting (finding better solutions) is increased. 
Increasing t  in the H function decreases the chance of choosing the attacking strategy by a cheetah due to 
the energy limitation. Still, this probability is not zero, which get entirely inspired by the cheetah’s behavior. 
To do this, if H ≥ r4 , attack mode is selected else the search mode is implemented. r4 is a random number 
between 0 and 3. Here, higher values of the r4 highlights the exploitation phase while decreasing it increases 
the exploration process.

5.	 The scanning and sitting-and-waiting strategies have the same meaning in the CO algorithm, indicating that 
the cheetah (search agent) has no movement during the hunting period.

6.	 If the leader fails in hunting in some consecutive hunting processing, the position of a randomly chosen 
cheetah is changed into the last place of success hunting (i.e., the prey position). Maintaining the prey posi-
tion among a small population in this algorithm strengthens the exploration phase.

7.	 Each group of cheetahs has a limitation on the hunting time due to their energy limitations. Hence, if a group 
couldn’t be succussed in a hunting period, the current prey is left, and the group comes back to its home range 
(initial position in this paper) to rest and then start another hunting. Indeed, a group of cheetahs will return 
home if their energies (which is modeled by hunting time) decrease and the leader’s position is constant. In 
this condition, the position of leader is also updated. As a result of this strategy, it is possible to avoid getting 
stuck in local optimum solutions.

8.	 In each iteration, part of members participated in the evolution process.
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Algorithm 1: The CO Algorithm
1: Define the problem data, dimension ( ), and the ini	al popula	on size ( )
2: Generate the ini	al popula	on of cheetahs , 2, …  and evaluate the fitness of each cheetah 
3: Ini	alize the popula	on’s home, leader and prey solu	ons 
4: ← 0

5: ← 1

6: ← desired maximum number of itera	ons 
7: ← 60 ⌈ /10⌉

8: while do
9:  Select members of cheetahs randomly 
10:  for each member do
11:  Define the neighbor agent of member 
12:   for each arbitrary arrangement ∈ , 2, … do
13:    Calculate ̂ , ̌ , , , and 
14:    , ← random numbers are chosen uniformly from 0 to 1 
15:    if  then       
16:     ← a random number is chosen uniformly from 0 to 3 
17:     if  then  
18:     Calculate the new posi�on of member  in arrangement  using Equa�on (3) //A�ack
19:    else 
20:     Calculate the new posi�on of member  in arrangement  using Equa�on (1) //Search
21:    end 
22:    else
23:     Calculate the new posi�on of member  in arrangement  using Equa�on (2) //Sit-and-wait
24:    end 
25:   end 
26: Update the solu�ons of member  and the leader 
27:  end 
28:  
29:  if  and the leader posi�on doesn't change for a �me, then //Leave the prey and go back home
30:   Implement the leave the prey and go back home strategy and change the leader posi�on 
31:   Subs�tute the posi�on of member  by the prey posi�on 
32:   ← 0

33:  end 
34:  
35:  Update the prey (global best) solu�on 
36: end 

 The essential phases of the CO algorithm may be represented as the pseudo-code summarized in Algorithm 1 
based on cheetah hunting techniques and assumptions. The source codes of this algorithm can be found in Sup-
plementary Information.

Algorithm complexity.  When evaluating the performance of an algorithm, its complexity is an important 
metric. In order to initialize each population in the CO as well as other algorithms such as PSO, GWO, GA, 
and DE, it requires O(o× n) time, where o represents the number of objectives and n represents the num-
ber of populations. Every algorithm has an O

(

MaxIt × ef
)

 complexity, where MaxIt is the maximum num-
ber of iterations and ef  defines evaluation function complexity for a given problem. If the entire process is 
simulated, O(N) would require. Accordingly, algorithms such as PSO, and GWO have a computational com-
plexity of O

(

N ×MaxIt × o× n× ef
)

 . For CO, GA and DE algorithms, the computational complexity is 
O
(

N ×MaxIt × o× n× ef × (mu+ cr)
)

 , where mu denotes mutation operations, and cr denotes crossover. 
Table 1 provides information on the average running time of CO and other algorithms for shifted sphere func-
tion with 10 variables for 1000 function evaluations and 25 independent runs. The population size for all algo-
rithms is set at 10 and the other parameters of the competitor algorithms are given in Table 2. GWO is more time 
efficient compared to other approaches in terms of seconds. By contrast, GA exhibit relatively higher computa-
tional time than other competitors. The results of Table 1 indicate that, the CO can find better optimal solution 
in terms of mean and standard deviation (SD) than other algorithms in a reasonable time. It should be noted 
that the computational time also depends on the coding method of each algorithm. We use typical source codes 
in this comparison.

Simulation results
Results of CO on 500‑D shifted CEC2005 test functions.  In this benchmark, f1 to f7 are classical uni-
modal functions, and f8 to f13 are multimodal functions. This case study is designed to analyze the CO behavior 
compared to well-known algorithms such as DE, GWO, GA, PSO, and TLBO in large-scale 500-D shifted bench-
mark functions. In Table 2, the parameters for CO and other competing algorithms are shown. Since the popula-
tion number differs from one case to another, the maximum number of function evaluations is set to 12 × 105 for 
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all algorithm to have a firm comparison. The statistical results of this case are presented in Table 3. These results 
confirm the superiority of CO algorithm over the competing algorithms for nine test functions f1, f3, f4, f6, f7, f9, 
f10, f12, and f13 in terms of mean and standard deviation. For test functions f2, and f11, DE algorithm is better than 
the other algorithms. GA provides better solution for test function f8, and TLBO shows better solution for test 
function f5. Also, according to Freidman’s rank test, the proposed CO algorithm shows the best performance 
among different competitor algorithms.

One of the major features of CO algorithm is the high capability in the exploitation phase, where the proposed 
strategies keep the population diversity and search the whole feasible search space, even in large scale optimiza-
tion problem with small size of initial population, i.e., n = 6. Indeed, in all objective functions, the population 
moves towards better solutions in consecutive iterations without trapping in local optima.

Results of CO on shifted‑rotated CEC2005 test functions.  The set of benchmarks with 14 shifted-
rotated CEC2005 functions with 30 variables are tested in this section. The results of CO are compared with 
several powerful, well-known evolutionary algorithms such as whale optimization algorithm (WOA)44, emperor 
penguin optimizer (EPO)64, slime mould algorithm (SMA)65, Jaya66, heat transfer search (HTS)67, modified par-
ticle swarm optimizer (MPSO)68, self-adaptive DE (jDE)69, DE70, and global and local real-coded genetic algo-
rithms based on parent-centric crossover operators (GL-25)71. The parameters of each algorithm are reported in 
Table 4 and for a fair comparison the number of fitness evaluations are set to 3 × 105 for all algorithms.

The performance of CO is analyzed through the searching history, convergence, and trajectory curves. Also, 
some aspects of CO are cleared using the curves of minimum, maximum and mean value of the objective func-
tion in each iteration. Table 5 compares the statistical results of CO with nine evolutionary algorithms. As can 
be observed from Table 5, the proposed CO algorithm in all functions provides better solution than the WOA, 
EPO, SMA, Jaya, HTS, DE, and jDE algorithms. Also, in all test functions except f11, CO algorithm overcomes 
the MPSO algorithm. Compared to GL-25, CO algorithm has been able to get better solutions for nine functions, 
i.e., functions f2, f3, f7, f8, f9, f11, f12, f13, and f14. By contrast, for f1, f4, f5, f6, f10 GL-25 is better than other algorithms. 
Mean rank values from Freidman test reveal that CO algorithm has the best performance among the competitor 
algorithms for solving 30-D shifted-rotated CEC2005 test functions.

The plotted search history in Fig. 3 shows that the CO gains a better solution through exploring the feasible 
search space. As shown in Fig. 3, each variable changes its location from the lower limit to its upper limits sev-
eral times, which guarantees to find suitable solutions. This regular searching history is a unique feature in the 
CO. The first graph from the right shows the minimum, maximum and average values of the objective function 
corresponding to the population in each iteration. Also, Fig. 3 shows that the leave the prey and go back home 
strategy keeps the population diversity during the evolution process. The cheetah’s strategies are adopted to 
proceed with the optimal solution despite population diversity in each step of evolution.

Results of CO on large scale optimization problems.  In this section, to investigate how the CO 
method deals with the large-scale optimization problem, it is tested on CEC-2010 and CEC-2013 large-scale 
functions to validate its performance. The results of CO in the original condition are compared to other well-
known modified algorithms which are tuned to solve the large-scale optimization problems, including72: (1) 
SLPSO, (2) CSO, (3) DMS-L-PSO, (4) CCPSO2, (5) DECC-G, (6) MLCC, and (7) DECC-DG methods as pre-
sented in Table 6. The results show that the CO can effectively enhance the results of eight benchmark functions 
while revealing completely comparable results in other objective functions. In the case of large-scale optimiza-
tion problems, the CO uses 6-population while 2 of them are called in each iteration. The maximum number of 
function evaluations for all algorithms are set to 3 × 106 for these problems.

A comparison study between CO algorithm with a new modified version of PSO named dynamic group learn-
ing distributed particle swarm optimization (DGLDPSO)73 is done in Table 7. As can be seen, the CO algorithm 
can defeat DGLDPSO in 10 functions while almost other objectives reach comparable values. It is worth noting 
that the CO can also be modified to achieve better solutions.

The CEC2013 large-scale benchmark functions74 are selected as another case study. Implementing the CO 
algorithm on these benchmarks is compared with seven well-known modified optimization algorithms adopted 
to solve the large-scale optimization problems in Table 8. The CO algorithm enhances the results of ten bench-
mark functions which confirm the effectiveness of CO algorithm in dealing with large-scale optimization prob-
lems. The initial populations are set to 6, while 2-population is used in each iteration. Indeed, by changing the 

Table 1.   Time comparison of some metaheuristic algorithms performance.

Algorithm Mean SD Average time (s)

CO 4.12 20.01 1.45

PSO 760.37 1212.30 3.16

GA 2942.00 1550.60 4.60

DE 330.97 151.59 1.27

GWO 775.02 662.53 0.75

TLBO 289.37 406.04 1.77
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turning factor and interaction factor ( ̌ri,j and βt
i,j ) and randomization parameter and step length ( ̂r−1

i,j  and αt
i,j ) 

the results of other benchmark functions can be enhanced.

Results of CO on the real‑life engineering application.  The ELD problem is one of the most signifi-
cant, well-known, and complicated optimization problems in power systems. This problem tries to determine 
the optimal output power generation of thermal units to meet the power system’s required load demand while 
minimizing the units’ fuel expenditures. ELD may also evaluate transmission system power losses and multi-fuel 
and valve point effects. The primary limitations of this problem include the restriction on load balance, restric-
tion on power generation, restriction on the ramp rate, and restriction on prohibited operation zone.

The detailed ELD formulation is explained in75. a 15-unit test system is considered to evaluate the perfor-
mance of CO algorithm to solve this nonconvex optimization issue. This system’s total demand is 2630 MW. 
Other information about this system can be found in75. The results of statistical comparisons between CO and 
different meta-heuristic and improved algorithms in recent studies are summarized in Table 9. The competitive 
modified and hybrid algorithms in these two cases are: bacterial foraging optimization (BFO)76, a modified ion 
motion optimization (MIMO) conglomerated with crisscross search (CSO) named C-MIMO-CSO77, TLBO78, 
an improved orthogonal design particle swarm optimization (IODPSO) algorithm79, synergic predator–prey 
optimization (SPPO) algorithm80, multi-strategy ensemble biogeography-based optimization (MsEBBO)81, a 
new variant for the firefly algorithm, considering a non-homogeneous population named NhFA-Rnp82, cluster-
ing cuckoo search optimization (CCSO)83, a novel variant of competitive swarm optimizer (CSO) referred to as 
OLCSO84, and adaptive charged system search (ACSS)85. The results demonstrate that the algorithm outperforms 
other state-of-the-art and improved algorithms in terms of worst, mean, best, and standard deviation values.

Conclusion
We proposed in this paper an optimization algorithm named cheetah optimizer (CO) based on the hunting 
process of cheetahs in nature. The proposed algorithm relies on several hunting strategies used by cheetahs 
instead of using mathematically complex approaches. In this regard, each decision variable is considered a pos-
sible arrangement of a group of cheetahs. Hence, each population can be regarded as a probable arrangement 
of cheetahs. The search, sit-and-wait and attack were mathematically modeled as the primary strategies of the 
proposed CO algorithm. Leave the prey and back to the home strategy was also implemented to enhance the 
algorithm’s abilities in avoiding premature convergence and local optimal entrapment. These concepts were mod-
eled in the CO framework so that it became an easy, fast, and powerful evolutionary method. The experimental 
results confirmed the monotonic behavior of the CO algorithm in dealing with low- and large-scale optimization 
problems. Finally, we validated the performance of the CO algorithm over the practical nonconvex ELD problem. 
The results showed that the suggested algorithm outperformed existing state-of-the-art algorithms in solving 
complex and challenging optimization problems. The main direction for future works is the development of the 
multi-objective CO, the application of CO to some complex engineering problems, and the hybridization of the 
proposed hunting strategies with other evolutionary methods.

Table 2.   Parameter setting of competing algorithms for solving 500-D shifted CEC2005 test functions.

Algorithm Parameter Value

CO
N 6

m 2

DE

n 100

CR 0.9

F 0.9

GWO n 40

GA

n 50

Pc 0.95

Pm 0.001

PSO

n 60

w 0.9

c1, c2 1.4961

TLBO n 20
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Table 3.   Results of 500-D shifted CEC2005 test functions. Significant values are in [bold].

FUN Properties CO DE GWO GA PSO TLBO

f1
Mean 8.46E−04 1.29E−03 8.31E+05 3.16E+01 5.74E+05 1.37E+06

SD 3.90E−05 2.21E−04 3.55E+04 8.01E+00 4.56E+04 3.66E+04

f2
Mean 4.81E−01 1.14E−04 1.55E+03 7.17E+01 1.05E+03 2.99E+03

SD 1.32E−02 1.39E−05 6.31E+01 2.95E+00 7.80E+01 1.34E+02

f3
Mean 1.60E+05 8.80E+06 2.73E+06 8.16E+05 5.17E+06 8.56E+06

SD 1.04E+04 4.38E+05 1.98E+05 8.36E+03 7.42E+05 1.47E+06

f4
Mean 3.44E+01 7.82E+01 9.37E+01 6.09E+01 1.31E+02 9.97E+01

SD 1.88E+00 3.13E+00 8.16E−01 1.74E+00 7.72E+00 2.07E−01

f5
Mean 1.06E+03 1.51E+04 3.21E+09 2.72E+03 2.74E+09 4.98E+02

SD 2.28E+02 3.13E+03 2.10E+08 3.18E+02 5.35E+08 1.36E−01

f6
Mean 2.51E−01 2.52E−01 7.88E+05 2.11E+01 5.79E+05 1.29E+06

SD 5.45E−05 2.46E−04 4.68E+04 8.25E+00 3.74E+04 4.71E+04

f7
Mean 1.09E−01 1.21E+00 2.29E+04 1.08E+00 2.04E+04 5.28E+04

SD 9.30E−03 1.17E−01 1.14E+03 9.25E−02 4.22E+03 1.42E+03

f8
Mean −1.71E+05 −1.32E+05 −6.47E+04 −2.09E+05 −1.18E+05 −3.13E+04

SD 3.13E+03 4.81E+03 4.07E+03 2.45E+02 4.45E+03 3.90E+03

f9
Mean 4.20E+01 4.00E+03 6.06E+03 7.28E+02 6.25E+03 8.16E+03

SD 5.21E+00 6.81E+01 1.73E+02 3.25E+01 3.34E+02 3.69E+02

f10
Mean 7.40E−03 6.48E+00 1.96E+01 7.71E+00 2.04E+01 2.00E+01

SD 9.00E−04 3.31E+00 1.31E−01 3.71E−01 3.77E−01 1.62E−03

f11
Mean 3.20E−01 1.59E−02 6.74E+03 1.13E+00 4.83E+03 1.14E+04

SD 3.37E−01 4.95E−02 4.54E+02 1.48E−01 6.10E+02 3.60E+02

f12
Mean 6.22E−04 1.35E+06 7.35E+09 2.47E−03 7.58E+09 1.45E+10

SD 1.97E−03 4.12E+06 6.13E+08 1.07E−03 3.04E+09 7.27E+08

f13
Mean 4.00E−01 8.00E+04 1.32E+10 1.48E+00 1.23E+10 2.84E+10

SD 6.64E−06 2.81E+04 1.27E+09 2.45E−01 1.63E+09 1.69E+09

Mean rank in
1.307692 2.769231 4.615385 2.384615 4.538462 5.384615

Freidman test

Table 4.   Parameter setting of competing algorithms for solving 30-D shifted-rotated CEC2005 test functions.

Algorithm Parameter value

CO n = 6, m = 2

WOA n = 30, a1 ∈ [2 0]; a2 ∈ [− 2 − 1]; b = 1

EPO n = 80, A ∈ [− 1.5, 1.5], T′ ∈ [1, 1000], S ∈ [0, 1.5], M = 2, f ∈ [2, 3], l ∈ [1.5, 2]

SMA n = 30, z = 0.03, a ∈ [− 1, 1], b ∈ [0, 1]

Jaya n = 50, r ∈ [0, 1]

HTS n = 50, R ∈ [0,1]

MPSO n = 40, w = 0.9, c1 = c2 = 1.4961

GL-25 Not Available

DE n = 100, CR = 0.9, F = 0.9

jDE n = 60, Fl = 0.1, Fu = 0.9, τ1 = τ2 = 0.1
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Table 5.   Comparison results between CO and nine evolutionary algorithms on shifted rotated CEC2005 test 
functions. Significant values are in [bold].

Algorithm CO WOA EPO SMA Jaya HTS MPSO GL-25 DE jDE

Unimodal functions

f1
Mean 5.70E−13 1.22E+03 8.47E+03 1.27E+01 4.86E+03 7.46E+01 6.05E+02 5.60E−27 7.69E+03 5.38E−12

SD 1.76E−12 8.24E+02 5.29E+03 2.80E+01 2.39E+03 3.76E+01 2.24E+02 1.76E−26 1.65E+03 2.12E−12

f2
Mean 3.25E−05 5.87E+03 5.17E+03 3.93E+02 2.80E+03 1.49E+02 2.31E+03 4.04E+01 3.93E+04 1.23E+02

SD 1.27E−05 1.95E+04 3.05E+03 1.75E+02 2.27E+03 9.37E+01 4.40E+02 6.28E+01 6.07E+03 2.00E+01

f3
Mean 8.02E+05 1.26E+08 2.29E+08 2.44E+07 4.50E+07 7.24E+07 1.61E+07 2.19E+06 1.04E+08 4.21E+06

SD 4.11E+05 3.45E+08 6.21E+07 7.14E+06 8.32E+06 3.16E+07 1.04E+07 1.08E+06 4.00E+07 9.02E+05

f4
Mean 1.52E+03 6.27E+04 3.75E+03 1.68E+03 2.52E+04 1.62E+03 1.11E+04 9.07E+02 5.05E+04 5.99E+03

SD 7.71E+02 5.77E+04 5.99E+02 1.90E+03 9.37E+03 1.21E+03 4.01E+03 4.25E+02 1.51E+04 1.36E+03

f5
Mean 5.82E+03 1.01E+04 1.89E+04 9.21E+03 7.54E+03 7.49E+03 6.62E+03 2.51E+03 1.13E+04 5.14E+03

SD 1.31E+03 7.93E+03 9.25E+03 3.16E+03 2.55E+03 3.92E+03 2.25E+03 1.96E+02 1.42E+03 7.36E+02

Basic multimodal functions

f6
Mean 5.10E+01 5.25E+08 3.76E+07 1.06E+04 1.21E+04 1.19E+06 2.14E+07 2.15E+01 5.89E+08 3.57E+01

SD 6.61E+01 2.74E+08 2.43E+07 7.87E+03 6.16E+03 9.12E+05 2.38E+07 1.17E+00 3.41E+08 3.46E+00

f7
Mean 2.06E−02 3.59E+02 5.36E+02 5.47E+01 3.85E+00 3.76E+02 1.37E+02 2.78E−02 4.70E+03 6.22E−02

SD 1.71E−02 2.60E+01 4.29E+02 1.25E+01 1.43E+00 3.02E+02 7.92E+01 3.62E−02 2.73E+00 1.97E−02

f8
Mean 2.02E+01 2.13E+01 2.15E+01 2.11E+01 2.12E+01 2.13E+01 2.07E+01 2.09E+01 2.11E+01 2.09E+01

SD 7.71E−02 1.15E−01 1.26E+00 9.93E−0 7.39E−01 9.17E−02 1.03E−01 5.94E−02 2.86E−02 4.59E−02

f9
Mean 2.03E−10 4.00E+02 5.34E+02 2.27E+02 3.02E+02 2.07E+02 1.65E+02 2.45E+01 2.66E+02 4.34E+01

SD 8.37E−10 8.52E+01 4.29E+01 6.18E+01 9.38E+01 7.99E+01 3.73E+01 7.35E+00 2.48E+01 6.04E+00

f10
Mean 1.99E+02 6.16E+02 3.48E+02 5.39E+02 5.05E+02 4.39E+02 2.07E+02 1.42E+02 3.37E+02 1.92E+02

SD 5.53E+01 7.20E+01 7.90E+01 2.04E+02 3.14E+02 2.72E+02 6.82E+01 6.45E+01 1.24E+01 1.35E+01

f11
Mean 2.69E+01 4.18E+01 6.14E+01 4.26E+01 5.96E+01 6.80E+01 2.68E+01 3.27E+01 4.27E+01 2.79E+01

SD 3.26E+00 2.92E+01 1.19E+01 3.33E+01 4.47E+01 5.64E+01 4.03E+00 7.79E+00 7.98E−01 1.18E+00

f12
Mean 1.76E+03 2.35E+05 3.59E+05 1.29E+04 1.70E+05 6.00E+04 8.92E+04 6.53E+04 4.84E+05 3.78E+04

SD 2.25E+03 5.79E+03 9.37E+04 8.14E+03 7.31E+04 3.18E+04 3.90E+04 4.69E+04 1.27E+05 5.63E+03

Expanded multimodal functions

f13
Mean 1.32E+00 1.93E+01 1.70E+01 1.90E+01 1.87E+01 1.67E+01 1.08E+01 6.23E+00 2.47E+01 6.04E+00

SD 3.04E−01 2.28E+00 1.60E+00 2.04E+00 1.04E+00 2.85E+00 1.64E+00 4.88E+00 1.50E+00 5.82E−01

f14
Mean 1.28E+01 1.49E+01 1.55E+01 1.60E+01 1.40E+01 1.38E+01 1.32E+01 1.31E+01 1.39E+01 1.29E+01

SD 3.32E−01 8.49E−01 1.10E+01 7.19E−01 5.38E−01 6.47E−01 1.05E−01 1.84E−01 1.90E−01 1.56E−01

Mean rank in Freidman test 1.642857 8.321429 8.5 5.75 6.857143 5.892857 4.642857 2.25 8.25 2.892857
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Figure 3.   Convergence characteristics of CO on shifted-rotated CEC2005 benchmark functions.
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Figure 3.   (continued)
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Figure 3.   (continued)
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Table 6.   Comparison of results of CO and state-of-the-art methods on the CEC2010 large-scale functions. 
Significant values are in [bold].

FUN Properties CO CSO CCPSO2 DECC-DG MLCC DMS-L-PSO DECC-G SLPSO

f1
Mean 2.4E−3 4.5E−12 1.6E+0 16.1E+0 000.0E+0 4.9E+9 13.6E−15 8.7E−18

SD 179.0E−6 778.0E−15 1.7E+0 11.9E+0 000.0E+0 231.0E+6 1.7E−15 519.0E−21

f2
Mean 115.3E+0 7.4E+3 7.5E+0 4.5E+3 332.0E−3 6.2E+3 48.8E+0 1.9E+3

SD 12.6E+0 286.0E+0 1.7E+0 209.0E+0 543.0E−3 187.0E+0 13.1E+0 112.0E+0

f3
Mean 14.1E−6 2.6E−9 8.9E−3 16.7E+0 81.7E−3 17.4E+0 1.7E+0 1.9E+0

SD 273.0E−9 452.0E−12 11.7E−3 271.0E−3 311.0E−3 56.1E−3 288.0E−3 166.0E−3

f4
Mean 107.0E+9 725.0E+9 1.2E+12 3.8E+12 15.4E+12 39.0E+12 12.5E+12 299.0E+9

SD 23.0E+9 123.0E+9 741.0E+9 675.0E+9 6.6E+12 4.4E+12 2.9E+12 71.6E+9

f5
Mean 279.0E+6 11.5E+6 453.0E+6 154.0E+6 313.0E+6 104.0E+6 260.0E+6 31.7E+6

SD 61.6E+6 1.6E+6 118.0E+6 19.0E+6 109.0E+6 7.8E+6 81.6E+6 6.2E+6

f6
Mean 8.5E+6 821.0E−9 19.2E+6 16.4E+0 16.1E+6 1.7E+6 4.8E+6 20.8E+0

SD 1.8E+6 46.1E−9 1.7E+6 273.0E−3 4.4E+6 442.0E+3 614.0E+3 4.0E+0

f7
Mean 92.8E−6 20.1E+3 170.0E+6 5.8E+3 1.8E+6 24.2E+9 8.4E+6 64.9E+3

SD 15.0E−6 3.9E+3 323.0E+6 2.7E+3 2.9E+6 1.6E+9 7.6E+6 56.0E+3

f8
Mean 4.2E+6 38.7E+6 33.1E+6 39.4E+6 37.6E+6 143.0E+6 47.2E+6 7.8E+6

SD 11.4E+6 68.1E+3 29.7E+6 29.8E+6 32.7E+6 34.2E+6 30.8E+6 1.6E+6

f9
Mean 25.2E+6 70.3E+6 114.0E+6 59.5E+6 119.0E+6 5.8E+9 254.0E+6 33.0E+6

SD 2.2E+6 5.7E+6 36.0E+6 9.2E+6 14.4E+6 202.0E+6 10.1E+6 4.5E+6

f10
Mean 4.9E+3 9.6E+3 5.7E+3 4.6E+3 3.0E+3 5.9E+3 9.2E+3 2.6E+3

SD 175.0E+0 76.7E+0 1.0E+3 121.0E+0 370.0E+0 248.0E+0 437.0E+0 217.0E+0

f11
Mean 194.0E+0 40.2E−9 198.0E+0 11.3E+0 196.0E+0 182.0E+0 25.2E+0 23.2E+0

SD 1.5E+0 6.9E−9 239.0E−3 504.0E−3 3.1E+0 8.6E+0 1.1E+0 2.1E+0

f12
Mean 133.0E+0 437.0E+3 27.8E+3 2.5E+3 36.0E+3 2.8E+6 39.1E+3 17.5E+3

SD 15.0E+0 62.2E+3 7.6E+3 314.0E+0 6.5E+3 110.0E+3 5.8E+3 9.1E+3

f13
Mean 1.2E+3 629.0E+0 1.3E+3 4.9E+3 2.4E+3 96.8E+6 3.1E+3 959.0E+0

SD 610.0E+0 232.0E+0 182.0E+0 2.7E+3 1.6E+3 26.2E+6 1.2E+3 374.0E+0

f14
Mean 78.7E+6 249.0E+6 322.0E+6 340.0E+6 324.0E+6 5.0E+9 577.0E+6 84.1E+6

SD 5.8E+6 15.3E+6 146.0E+6 18.5E+6 19.7E+6 343.0E+6 21.8E+6 6.3E+6

f15
Mean 9.7E+3 10.1E+3 10.2E+3 5.8E+3 7.2E+3 6.2E+3 9.8E+3 11.2E+3

SD 446.0E+0 52.3E+0 890.0E+0 60.2E+0 1.1E+3 276.0E+0 2.7E+3 86.5E+0

f16
Mean 391.0E+0 58.9E−9 397.0E+0 723.0E−15 381.0E+0 339.0E+0 85.0E+0 25.1E+0

SD 1.6E+0 6.3E−9 464.0E−3 48.9E−15 47.7E+0 788.0E−3 10.4E+0 2.4E+0

f17
Mean 3.7E+3 2.2E+6 141.0E+3 41.8E+3 156.0E+3 2.7E+6 163.0E+3 90.0E+3

SD 286.0E+0 155.0E+3 58.1E+3 1.1E+3 10.3E+3 154.0E+3 9.6E+3 15.8E+3

f18
Mean 2.6E+3 1.7E+3 2.9E+3 15.1E+9 6.8E+3 2.8E+9 9.0E+3 2.8E+3

SD 761.0E+0 522.0E+0 373.0E+0 1.9E+9 6.0E+3 530.0E+6 1.1E+3 833.0E+0

f19
Mean 533.0E+3 10.1E+6 1.4E+6 1.7E+6 1.3E+6 16.3E+6 733.0E+3 5.1E+6

SD 21.2E+3 564.0E+3 89.0E+3 104.0E+3 105.0E+3 670.0E+3 46.1E+3 705.0E+3

f20
Mean 1.6E+3 1.1E+3 2.0E+3 61.7E+9 2.0E+3 4.1E+9 3.5E+3 1.9E+3

SD 142.0E+0 159.0E+0 208.0E+0 5.8E+9 196.0E+0 634.0E+6 245.0E+0 180.0E+0

+ (CO is less) 11 17 15 14 15 13 12

– (CO is greater) 9 1 5 5 5 6 8

= (is equal) 0 2 0 1 0 1 0



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10953  | https://doi.org/10.1038/s41598-022-14338-z

www.nature.com/scientificreports/

Table 7.   Results of CO and DGLDPSO on the CEC2010 large-scale functions. Significant values are in [bold].

FUN Properties CO DGLDPSO FUN Properties CO DGLDPSO

f1
Mean 2.4E−3 4.55E−21

f11
Mean 1.94E+2 3.28E−13

SD 1.79E−04 2.61E−22 SD 1.52E+00 1.23E−14

f2
Mean 1.153E+2 7.35E+02

f12
Mean 1.33E+2 6.25E+04

SD 1.26E+1 4.52E+1 SD 1.5E+1 3.55E+03

f3
Mean 1.41E−05 2.33E−13

f13
Mean 1.20E+03 5.70E+02

SD 2.73E−07 1.55E−14 SD 6.10E+2 1.83E+02

f4
Mean 1.07E+11 3.26E+11

f14
Mean 7.87E+07 1.46E+08

SD 2.30E+10 5.98E+10 SD 5.84E+06 8.59E+06

f5
Mean 2.79E+08 2.83E+07

f15
Mean 9.73E+03 1.05E+04

SD 6.16E+07 1.06E+06 SD 4.46E+2 9.96E+01

f6
Mean 8.51E+06 4.14E−09

f16
Mean 3.91E+2 3.58E−13

SD 1.75E+06 1.39E−10 SD 1.57E+00 1.14E−14

f7
Mean 9.28E−05 2.43E+01

f17
Mean 3.71E+03 1.84E+06

SD 1.50E−05 1.00E+01 SD 2.86E+2 3.03E+05

f8
Mean 4.18E+06 2.84E+07

f18
Mean 2.578E+3 1.97E+03

SD 1.14E+07 1.99E+5 SD 7.61E+2 6.27E+02

f9
Mean 2.52E+07 4.47E+07

f19
Mean 5.33E+5 5.66E+06

SD 2.16E+06 3.44E+06 SD 2.12E+4 2.88E+05

f10
Mean 4.86E+03 2.05E+03

f20
Mean 1.563E+3 1.25E+03

SD 1.75E+2 1.26E+02 SD 1.42E+2 1.18E+02
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Table 8.   Comparison of results of CO and state-of-the-art methods on the CEC2013 large-scale functions. 
Significant values are in [bold].

FUN Properties CO CSO CCPSO2 DECC-DG MLCC DMS-L-PSO DECC-G SLPSO

f1
Mean 111.0E−6 3.7E−12 5.3E+0 1.3E+3 81.0E−27 5.7E+9 2.2E−12 10.9E−18

SD 15.5E−6 1.2E−12 1.3E+0 4.0E+3 311.0E−27 144.0E+6 883.0E−15 2.6E−18

f2
Mean 198.0E+0 7.0E+3 12.4E+0 12.8E+3 8.3E+0 12.4E+3 49.0E+0 2.1E+3

SD 24.3E+0 356.0E+0 1.0E+0 462.0E+0 5.6E+0 269.0E+0 22.5E+0 136.0E+0

f3
Mean 20.0E+0 21.6E+0 20.0E+0 21.4E+0 20.0E+0 21.4E+0 20.1E+0 21.6E+0

SD 3.8E−9 5.4E−3 40.0E−6 15.2E−3 1.7E−3 19.2E−3 2.3E−3 14.5E−3

f4
Mean 659.0E+6 12.6E+9 16.1E+9 52.4E+9 87.6E+9 900.0E+9 142.0E+9 4.4E+9

SD 277.0E+6 1.9E+9 7.6E+9 33.6E+9 28.5E+9 37.8E+9 64.9E+9 948.0E+6

f5
Mean 21.8E+6 862.0E+3 17.0E+6 5.8E+6 10.2E+6 5.5E+6 7.5E+6 841.0E+3

SD 3.0E+6 21.3E+3 4.1E+6 349.0E+3 1.9E+6 419.0E+3 1.3E+6 123.0E+3

f6
Mean 1.0E+6 1.1E+6 1.1E+6 1.1E+6 1.1E+6 1.0E+6 1.1E+6 1.1E+6

SD 19.1E+3 1.1E+3 9.5E+3 904.0E+0 3.7E+3 4.0E+3 582.0E+0 1.5E+3

f7
Mean 61.9E+3 7.6E+6 116.0E+6 835.0E+6 430.0E+6 3.6E+9 398.0E+6 1.6E+6

SD 15.0E+3 1.4E+6 87.1E+6 766.0E+6 218.0E+6 261.0E+6 303.0E+6 705.0E+3

f8
Mean 25.4E+12 350.0E+12 620.0E+12 4.6E+15 4.6E+15 6.8E+15 2.9E+15 103.0E+12

SD 16.5E+12 35.9E+12 584.0E+12 525.0E+12 3.7E+15 1.4E+15 1.3E+15 36.2E+12

f9
Mean 1.7E+9 39.4E+6 3.2E+9 500.0E+6 898.0E+6 505.0E+6 597.0E+6 82.5E+6

SD 212.0E+6 6.4E+6 600.0E+6 22.0E+6 197.0E+6 26.6E+6 119.0E+6 10.6E+6

f10
Mean 92.4E+6 94.1E+6 93.7E+6 94.6E+6 92.2E+6 93.1E+6 93.0E+6 92.5E+6

SD 630.0E+3 149.0E+3 440.0E+3 34.7E+3 384.0E+3 311.0E+3 553.0E+3 1.7E+6

f11
Mean 14.2E+6 358.0E+9 930.0E+9 23.5E+9 120.0E+9 496.0E+9 59.0E+9 933.0E+9

SD 8.9E+6 9.8E+9 9.6E+9 13.2E+9 27.7E+9 40.1E+9 44.9E+9 9.0E+9

f12
Mean 1.7E+3 1.3E+3 2.0E+3 163.0E+9 2.1E+3 4.4E+9 3.4E+3 1.8E+3

SD 255.0E+0 82.3E+0 88.7E+0 16.1E+9 199.0E+0 834.0E+6 269.0E+0 174.0E+0

f13
Mean 3.9E+6 806.0E+6 2.0E+9 19.8E+9 8.2E+9 116.0E+9 4.5E+9 465.0E+6

SD 1.2E+6 102.0E+6 554.0E+6 6.1E+9 2.7E+9 10.5E+9 647.0E+6 317.0E+6

f14
Mean 17.9E+6 5.2E+9 142.0E+9 18.6E+9 118.0E+9 1.3E+12 75.3E+9 328.0E+6

SD 2.0E+6 2.9E+9 98.7E+9 9.4E+9 68.6E+9 159.0E+9 34.4E+9 517.0E+6

f15
Mean 775.0E+3 17.4E+6 3.7E+6 9.5E+6 6.7E+6 1.6E+9 4.8E+6 78.7E+6

SD 30.6E+3 653.0E+3 1.7E+6 984.0E+3 917.0E+3 618.0E+6 421.0E+3 8.5E+6

+ (CO is less) 11 17 13 9 13 12 12

− (CO is greater) 4 2 2 5 2 3 3

= (is equal) 0 1 0 1 0 0 0

Table 9.   Statistical results of CO and other metaheuristic methods in solving ELD of the 15-unit test system. 
Significant values are in [bold].

Method Worst Mean Best SD

BFO76 32,784.502 32,976.8120 – 8.58E+01

C-MIMO-CSO77 32,701.210 32,701.2101 32,701.2200 5.80E−03

TLBO78 32,697.215 32,697.2151 32,697.2151 0.00E+00

IODPSO-L79 32,692.390 32,692.3958 32,692.3900 0.00E+00

SPPO80 32,708.000 32,732.0866 32,789.0000 1.80E+01

MsEBBO81 32,692.397 32,692.3973 32,692.3975 6.09E+05

NhFA-Rnp82 32,697.910 32,700.5600 32,709.9400 2.64E+00

CCSO83 32,706.640 32,706.6422 32,706.6400 7.00E−04

OLCSO84 32,692.3961 32,692.3981 32,692.4033 2.20E−03

ACSS85 32,761.3126 32,727.6967 32,678.1290 2.55E+01

CO 32,678.1866 32,678.1465 32,678.0999 2.75E−02
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