
A binary monkey search algorithm variation for solving the set
covering problem

Broderick Crawford1 • Ricardo Soto1 • Rodrigo Olivares1,2 • Gabriel Embry1 • Diego Flores1 •

Wenceslao Palma1 • Carlos Castro3 • Fernando Paredes4 • José-Miguel Rubio5

Published online: 11 July 2019
� Springer Nature B.V. 2019

Abstract
In complexity theory, there is a widely studied grouping of optimization problems that belongs to the non-deterministic

polynomial-time hard set. One of them is the set covering problem, known as one of Karp’s 21 NP-complete problems,

and it consists of finding a subset of decision variables for satisfying a set of constraints at the minimum feasible cost.

However, due to the nature of the problem, this cannot be solved using traditional complete algorithms for hard instances.

In this work, we present an improved binary version of the monkey search algorithm for solving the set covering problem.

Originally, this approximate method was naturally inspired by the cognitive behavior of monkeys for climbing mountains.

We propose a new climbing process with a better exploratory capability and a new cooperation procedure to reduce the

number of unfeasible solutions. For testing this approach, we present a detailed computational results section, where we

illustrate how this variation of the monkey search algorithm is capable of reaching various global optimums for a well-

known instance set from the Beasley’s OR-Library and how it outperforms many other heuristics and meta-heuristics

addressed in the literature. Moreover, we add a complete statistical analysis to show the effectiveness of the proposed

approach with respect to the original version.

Keywords Monkey search algorithm � Set covering problem � Metaheuristics � Parameter setting � Optimization problem

1 Introduction

Over the years, many companies have seen the need to use

their resources to meet the needs of a sector; thus, these

companies try to always use their capital as efficiently as

possible, in other words, trying to minimize the costs. Such

situations can be represented by the set covering problem,

which is a classic problem in combinatorics, computer

science (Crawford et al. 2017), and computational com-

plexity theory. Lots of real-world problems have been

modeled by the set covering, such as production planning

in industry (Vasko et al. 1987), crew scheduling in airli-

nes (Housos and Elmroth 1997), and facility location

problem (Vasko and Wilson 1984), among many others.

Due to the characteristics of this problem, the complexity

of this begins to increase with an increasing number of

constraints (needs). The number of solutions and the time

needed to check them increase. The reason is simple: it is

not feasible to fix the larger instances of this problem

manually using exact algorithms. In this line, studies have

had to move in new ways to solve it, leading to the use of

metaheuristics in order to find solutions to the problem.

These new techniques generally are based on neural net-

works, animal behavior, human behavior or non-deter-

ministic procedures.

& Broderick Crawford

broderick.crawford@pucv.cl

& Ricardo Soto

ricardo.soto@pucv.cl

& Rodrigo Olivares

rodrigo.olivares@uv.cl

1 Pontificia Universidad Católica de Valparaı́so, Valparaiso,

Chile

2 Universidad de Valparaı́so, Valparaiso, Chile

3 Universidad Técnica Federico Santa Marı́a, Valparaiso, Chile

4 Escuela de Ingenierı́a Industrial, Universidad Diego Portales,

Santiago, Chile

5 Universidad Tecnológica de Chile INACAP, Santiago, Chile

123

Natural Computing (2020) 19:825–841
https://doi.org/10.1007/s11047-019-09752-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0582-954X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-019-09752-8&domain=pdf
https://doi.org/10.1007/s11047-019-09752-8

However, it is well known that the performance of

metaheuristics depends largely on their correct parameter

settings. In fact, finding the appropriate values for the

parameters of an algorithm is considered to be a non-trivial

task. Previous research has addressed this task that can be

classified into two major forms of parameter setting:

parameter tuning and parameter control. Parameter tuning

is known as the process of finding good parameter values

before the run of the solver –by using for instance training

instances–, and then launching the algorithm using these

values, which remain static during solving. On the con-

trary, parameter control launches the algorithm with initial

parameter values which are updated during the run. This

applies to some metaheuristics, for instance in evolutionary

algorithms the better values of these encoded parameters

may lead to better individuals, which in turn have more

chances to propagate these good configurations to next

generations. In this research, we improved the original

version of the binary monkey search algorithm (Zhou et al.

2016b) (we called it IBMSA), and then, we design a new

variation of it (IBMSAV), both for solving the set covering

problem. The improved version and its variation, both were

designed using the concept of online control.

Those algorithms are based on the monkey search

algorithm (MA) (Zhao and Tang 2008) proposed in 2007 to

solve the global numerical optimization problem. It is a

swarm intelligence-based algorithm derived from simula-

tion of the mountain-climbing processes of the monkeys

when they look for food. The above algorithms are rela-

tively new; the MA was used to solve the renewable energy

problem (Ituarte-Villarreal et al. 2012), and the IBMSA

was used to solve the knapsack problem (Zhou et al.

2016b), among others, but neither of them was used to

solve the set covering problem. The IBMSA (and the

IBMSAV) consists of four steps: Climbing Process, Watch-

Jump Process, Somersault Process and Cooperation Pro-

cess. These steps aim to find the optimal local solution, find

better solutions than the previous step, and find a new

solution domain. They ultimately improve local solution

finding and accelerate the convergence order.

This research aims to understand the set covering

problem and propose a new solution based on an improved

variation of the binary monkey search algorithm. First, in

Sect. 2, we present a literature review of the problem and

several techniques to solve it. Then, the set covering

problem with its mathematical model is explained in

Sect. 3. Later, in Sect. 4, the IBMSA is exposed next to our

proposed variation, in which each of its steps will be

explained, along with mathematical models that support

them, including pseudo-code to implement the algorithm.

Finally, the experimental results and discussion at the

conclusion of this work are shown in Sects. 5 and 6,

respectively.

2 Related works

Metaheuristics are multi-purpose problem solvers devoted

to particularly tackle large instances of complex opti-

mization problems. They are commonly able to provide

near-optimal solutions in a limited amount of time when no

efficient problem-specific algorithm pre-exists. Most

metaheuristics are inspired by interesting processes and

phenomenon from nature such as the selection and evolu-

tion mechanisms of species (Holland 1975), the path

seeking skills of ants (Dorigo et al. 1996), the attraction

capabilities of fireflies (Yang and He 2013), or the

echolocation behavior of bats (Yang 2010). All meta-

heuristics operate similarly and share various features. The

goal is to explore promising regions of the search space in

order to rapidly converge to optimal solutions. The

exploration is done by multiple agents that employ proper

movements, based on some parameter configuration, to

reach fruitful search areas. They also use feedback infor-

mation for modifying their internal operation so as to

improve search performance. Unsurprisingly, the success-

ful results given by metaheuristics added to the simplicity

of computational requirements have produced a very fast

growth of this research field during the last years. Indeed,

there exists today more than 70 different metaheuristics

and various of them have successfully participated in

solving problems from different areas such as: traveling

salesman problem (Zhou et al. 2015) and (Xin et al. 2017),

vehicle path planning (Zhang et al. 2016), scheduling

problem (Zhou et al. 2014), knapsack problem (Zhou et al.

2015, 2016a; Zhou 2016; Basset and Zhou 2018), among

others (Burke et al. 2003).

Parameter setting (Roeper and Williams 1987) is one of

the most studied challenges in the evolutionary computing

field (Eiben et al. 1999; Salto and Alba 2011; Qin and

Suganthan 2005; Yi et al. 2014; Han et al. 2012; Liang

et al. 2001). However, a more reduced work can be

observed in the literature when other metaheuristics are

involved. For instance, a parameter adaptation study on ant

colony optimization is reported in Stutzle et al. (2012), a

firefly algorithm for solving the optimal capacitor place-

ment problem is described (Olamaei et al. 2013), in Li and

Yin (2012) a self-adaptive artificial bee colony for con-

strained numerical optimization is presented, and a modi-

fied cuckoo search algorithm for solving engineering

problems can be encountered in Mahmoudi and Lotfi

(2015), Nguyen and Vo (2015). Now, considering more

similar works, we find a variation of genetic algorithm that

adjusts its population size in Affenzeller et al. (2007). The

basic idea is to adapt the actual population size depending

on the difficulty of the algorithm in its ultimate goal to

generate new child chromosomes that outperform their

826 B. Crawford et al.

123

parents. In Cui et al. (2017), a recent self-adaptive version

of a genetic algorithm is proposed, where differential

evolution is involved in the process. Similarly, (Li and Yin

2015) presents a version of cuckoo search algorithm that

adapts their parameter pa reflecting the probability whether

the nest will be abandoned or updated. In both cases, the

adaptive approach depends of quality solution. Finally, in

Akay and Karaboga (2012) we can observe a variation of

the artificial bee colony that consists in controlling the

perturbation frequency.

The set covering problem is a widely studied opti-

mization problem in the mathematical programming liter-

ature. In this context, preliminary work proposed to solve it

via exact methods, which commonly rely on branch-and-

bound (Balas 1997; Beasley 1987) and branch-and-cut

algorithms (Fisher and Kedia 1990). However, the main

problem is that these algorithms take too long to solve the

hard instances. To tackle this concern, much research in

recent years has been focused on the development of new

heuristics capable of finding optimal solutions in a rea-

sonable amount of time. For instance, classical greedy

algorithms are quite fast and easy to implement, although

they are unable to generate high-quality solutions due to

their deterministic nature (Chvatal 1979). The incorpora-

tion of memory and random components in greedy algo-

rithms has led to better solutions (Lan and DePuy 2006).

Nevertheless, Lagrangian relaxation-based heuristics are in

general much more effective (Ceria et al. 1998; Caprara

et al. 1999) than the abovementioned approaches. A

detailed description of efficient exact methods and heuris-

tics devoted to set covering problems can be found in

Caprara et al. (2000). As top-level general search strate-

gies, metaheuristics have also largely been applied to solve

set covering problems in recent years. Various examples in

this context include classic approaches, such as genetic

algorithms (Yelbay et al. 2014), colony optimiza-

tion (Crawford et al. 2011; Valenzuela et al. 2014), simu-

lated annealing (Brusco et al. 1999), and a variant of the

partial set covering problem using tabu search (Bilal et al.

2014). More recent metaheuristics for solving set covering

problems can also be found in the literature, such as cat

swarm optimization (Crawford et al. 2015a), firefly algo-

rithm (Crawford et al. 2014a), shuffled frog leap-

ing (Crawford et al. 2015b), electromagnetism-like

algorithm (Soto et al. 2015c), artificial bee colony (Craw-

ford et al. 2014b), and interesting comparisons between the

behaviors of the cuckoo search algorithm and black hole

optimization (Soto et al. 2017), among other works.

3 Problem statement

The set covering problem has many applications in real life

and industry, e.g., the allocation of services (ReVelle et al.

2010; Brotcorne et al. 2003), load balancing production

lines (Salveson 1995), and the selection of files in a data-

base (Day 1965), among others. Many decision-making

contexts can be described using an approach based on this

problem, mainly due to its binary nature that can be

associated with an assignment or a decision with only two

responses. This inference would allow for improving, e.g.,

the quantitative and qualitative performance of the assets of

the entity in charge, letting them be used in a better way.

In previous and recent works, this problem has been

described through the use of a set of variables, a set of

constraints, and the active relationship that exists between

them. The aim is finding a minimum subset of variables for

satisfying the set of all the constraints. Formally, in com-

plexity theory, the set covering problem is considered as a

classic combinatorial problem that belongs to the NP-

Completeness class (Hartmanis 1982), and it was formu-

lated as a binary linear problem, according to the following

decision variable:

xj ¼
1; if the variable j is part of the solution.

0; otherwise.

�

ð1Þ

It is possible to consider at least two ways to work with

this problem: unicost and non-unicost. The unicost variant

states that the cost for including a decision variable is equal

to 1, for all them. On the other hand, the non-unicost

variant considers that the decision variables could have a

different inclusion value.

As mentioned, a feasible solution for this problem is

given by a subset of decision variables that covers all of the

constraints. Under this line of thought, an instance of the

set covering problem can be resolved for many solutions, it

being necessary to perform evaluating the quality of solu-

tions to know which is the best. This evaluation is carried

out through a linear function on the sum of the costs for all

variables of the solution. This function is called the

objective function and is defined as follows:

minimize
XN
j¼1

cjxj ð2Þ

where N is the number of decision variables and cj is the

cost of each them. To solve for a unicost instance,

cj ¼ 1; 8 j 2 f1; . . .;Ng.
The specific problem seeks to find feasible solutions at

the lowest possible cost. The feasibility of a solution is

A binary monkey search algorithm variation for solving the set covering problem 827

123

tested using all constraints. If at least one decision variable

that is part of the solution ðxj ¼ 1Þ covers each one of the

constraints, then it is possible to state that the solution is

feasible. The formula for this is given by:

XN
j¼1

aijxj� 1; 8 i ¼ f1; . . .;Mg ð3Þ

where N is the total number of decision variables, aij is the

coefficient of the decision variable in the constraint, and

M represents the number of constraints to satisfy.

To clarify the set covering problem, we firstly expose

the following example.

Four senior developers work in a software company.

Each of them uses at least one programming language. The

first one knows C, C??, and Python; the second one

understands C?? and Java; and the third one comprehends

C??, Ruby, and Python. Finally, the fourth one works

with C, Java, and Ruby (see Table 1).

The main idea is to put together a team subject to two

requirements:

1. The team must be made up of at least one person who

knows each language (i.e., C, C??, Java, Python, and

Ruby).

2. The team should be as small as possible.

To solve this instance, a binary decision variable is

proposed:

xj ¼
1; if the senior developer j is part of the team.

0; otherwise.

�

ð4Þ

To satisfy the first requirement, it is necessary to include

senior developers, ensuring that the team knows all the

programming languages. To represent the relationship

between the senior developers—decision variables—and

the programming languages – constraints—we use an

assignment zero-one matrix (Feo and Resende 1989). In

this matrix, M and N represent the number of programming

languages and the number of senior developers, respec-

tively. For instance, according to Row 1, we can determine

that there are two senior developers that know the C

language.

A ¼

1 0 0 1

1 1 1 0

0 1 0 1

1 0 1 0

0 0 1 1

2
6666664

3
7777775

ð5Þ

To cover the second requirement, we should minimize

the number of senior developers that are part of the team.

For that, the objective function is used for evaluating the

quality of each solution. Finally, the integer programming

model is as follows:

minimize
X4

j¼1

cjxj

subjectto

x1 þ x4� 1

x1 þ x2 þ x3� 1

x2 þ x4� 1

x1 þ x3� 1

x3 þ x4� 1

ð6Þ

The first three senior developers get to know all pro-

gramming languages from a set cover of size 3. However,

if we consider that the team is formed only by the third and

fourth senior developers, we get a set cover of size 2, which

is optimal. This solution is represented by the binary vector

X ¼ h0; 0; 1; 1i.
We can transform this example into a non-unicost

instance. For that, it is necessary to differentiate the cost of

each senior developer. The component cj is the cost vector

associated to each senior developer xj; 8 j 2 f1; . . .; 4g. If

we consider different costs for each senior developer, it is

possible that the solution—team—changes.

4 Monkey search algorithm

The monkey search algorithm was proposed in 2007 and

was recently improved to solve numerical optimization

problems as a new swarm intelligence-based algorithm

inspired from the mountain-climbing behavior of monkeys

when they look for new food sources (Zhou et al. 2016b).

Algorithm 1 describes the primary process to learn how it

works.

Table 1 List of senior developers and their knowledge of program-

ming languages

Programming languages Senior developers (sd)

sd1 sd2 sd3 sd4

C 4 4

C?? 4 4 4

Java 4 4

Python 4 4

Ruby 4 4

828 B. Crawford et al.

123

The monkey algorithm consists of the following steps:

the Climbing Process, the Watch-Jump Process, and the

Somersault Process. Assume that there are many mountains

in a certain terrain. At the beginning, the monkeys will

climb up the nearest mountain from their initial positions in

order to find the mountaintops (Climbing Process).

When the monkey gets to the top of its mountain, it will

find a higher one within a certain range (called the monkey

sight), and it jumps from its current position to the new

mountain (Watch-Jump Process) and then repeats the

Climbing Process. After repeating the processes mentioned

above a certain number of times, each monkey will som-

ersault to a new search domain to find a much higher

mountain (Somersault Process).

In 2015, a variation of the MA was proposed to solve the

0–1 Knapsack Problem (Zhao and Tang 2008). The

improved binary monkey search algorithm (IBMSA)

includes the same three steps that its predecessor has but

also includes two new steps: the Greedy Strategy and the

Cooperation Process. The greedy algorithm is used to

correct the unfeasible solutions and to improve the quality

of feasibility; in other words, it is a repair algorithm. The

Somersault Process is modified to avoid falling into local

search; the Cooperation Process is implemented to speed

up the convergence rate. Additionally, we implement a

redundancy reduction process, which helps to improve the

quality of the solutions.

In this work, we present a new variation of the IBMSA

that provides a better exploration method for finding

potential high-quality solutions. This algorithm has the

same steps as the former, but the Climbing and Coopera-

tion Processes have been modified. The main idea is cor-

recting those solutions with variables outside of the binary

domain, applying a transformation function that uses a

stochastic procedure inspired by the comparative on sig-

moid function versus a uniform distribution. The steps

must satisfy our proposal as described in Sects. 4.1–4.9.

4.1 Coding method

The parameter Mpop is defined as the population size of

monkeys. For a certain monkey i, its position is denoted as

a vector Xi ¼ hxi1; . . .; xiNi, and this position will be

employed to express a solution of the set covering problem,

where xij 2 f0; 1g and j 2 f1; . . .;Ng represent the decision

variables.

4.2 Initial population

In the improved binary monkey search algorithm and in the

proposed variation, the initial population is randomly

generated. The random initialization process for Mpop

monkeys—potential solutions—and N decision variables is

showed in Algorithm 2, where xij represents the jth deci-

sion variable of the ith solution.

4.3 Climbing process

According to the idea of a pseudo-gradient-based simul-

taneous perturbation stochastic approximation (SPSA) (S-

pall 1992), this process is a step-by-step procedure to

improve the objective function value by choosing the best

of two positions that are generated around the current one.

For monkey i, Xi is the solution vector, and the objective

function value is given by f ðXiÞ. The Climbing Process

used in the IBMSA is given as follows:

1. Randomly generate two vectors X
0

i ¼ hx
0

i1; . . .; x
0

iNi and

X
00

i ¼ hx
00
i1; . . .; x

00
iNi, and each decision variable fx0ij; x

00
ijg

is initialized with a or �a value; take it according to an

uniform probability. The parameter a is called a step of

the Climbing Process, and it depends on the situation,

but its absolute value is always greater than zero

ðjaj[0Þ.

Algorithm 1 Monkey Search Algorithm

1begin
2initialPopulation()
3do
4do
5climbingProcess()
6watchJumpProcess()
7while(isMaximumNwReached())
8cooperationProcess()
9somersaultProcess()
10repairerAndRedundancyReductionProcess ()
11while(isStopCriteriaReached())
12end

A binary monkey search algorithm variation for solving the set covering problem 829

123

2. Let x
0
ij jxij � x

0
ijj, and x

00
ij jxij � x

00
ijj,

8 i 2 f1; . . .;Mpopg ^ 8 j 2 f1; . . .;Ng. If X
0

i is unfeasi-

ble or X
00

i is unfeasible, Xi should be kept unchanged

and go back to step (1).

3. Calculate f ðX0iÞ and f ðX00i Þ.
4. If f ðX0iÞ\f ðX00i Þ and f ðX0iÞ\f ðXiÞ, then Xi X

0

i. If

f ðX00i Þ\f ðX0iÞ and f ðX00i Þ\f ðXiÞ, then Xi X
00

i .

5. Repeat steps (1) to (4) until the maximum allowable

number of iterations has been reached. This limit is

denoted by Nc.

In the IBMSA variation proposed, step (2) is modified in

order to improve the search for new solutions. This

approach is inspired by the classic and widely known

method for generating binary initial populations. There-

fore, instead of keeping Xi unchanged if the generated

solution is unfeasible, we ‘‘fix’’ it. Thus, set x
0
ij jxij � x

0
ijj

and x
00

ij jxij � x
00

ijj, 8 i 2 f1; . . .;Mpopg ^ 8 j 2 f1; . . .;Ng.
If X

0

i contains variables outside the domain or X
00

i contains

variables outside the domain – unfeasible—a random

number is generated with uniform distribution u�ð0; 1Þ. If

u\
1

1þ e�xij
, then xij 0, or else, xij 1.

4.4 Watch jump process

When the monkey reaches the top of the mountain, it will

try to find a higher point than its current position that is

within its sight. If it discovers one, then it will jump to the

higher point, and then it will start the Climbing Process

again. For the ith monkey, its position is given by

Xi ¼ hxi1; . . .; xiNi, 8 i 2 f1; . . .;Mpopg. The Watch-Jump

Process is given as follows:

1. Randomly generate a real vector Y in the interval

½xij � b; xij þ b�, 8 j 2 f1; . . .;Ng where b is the

monkey’s sight, and it can be determined depending

of the situation, i.e., Y ¼ hy1; . . .; yNi.
2. Due to the real value yj 2 ð0; 1Þ, randomly generate a

real number with uniform distribution /�ð0; 1Þ and

compare it with yj. If yj\/; then, yj 0, or else,

yj 1.

3. Calculate f ðYÞ.
4. If f ðYÞ\f ðXiÞ, then Xi Y.

5. Repeat steps (1) to (4) until the maximum allowable

number of iterations has been reached. This limit is

denoted by Nw.

4.5 Greedy strategy: repair process

In solving the set covering problem, some monkeys may

have an abnormal encode (that does not meet the con-

straints). For this reason, the local search strategy-greedy

algorithm is implemented and run. The main idea is

repairing the unfeasible solutions to improve feasibility.

Assuming the monkey Xi is not a feasible solution, then

Xi ¼ hxi1; . . .; xiNi. The greedy algorithm is given as

follows:

1. Search for an uncovered row according to the

constraint zero-one matrix.

2. Create a vector with possible candidates to cover the

previously mentioned row.

3. For each candidate, calculate its weight.

W ¼ Number of rows covered by the candidate

Cost of the candidate
ð7Þ

4. Select the candidate with the highest W, and put it in

the monkey Xi.

5. Repeat steps (1) to (4) until the monkey Xi becomes

feasible.

Algorithm 2 Initial Population Process

1for all i from 1 to Mpop do
2for all j from 1 to N do
3Randomly generate r
4if r < 0.5 then
5xij ← 0
6else
7xij ← 1
8endif
9endfor
10endfor

830 B. Crawford et al.

123

4.6 Redundancy reduction process

Once the monkeys have gone through the Repair Process,

the Redundancy Reduction Process is initiated (Lanza-

Gutierrez et al. 2017) to reduce the overall cost of the

monkey. For each monkey i, Xi ¼ hxi1; . . .; xiNi, the

redundancy reduction process is given as follows:

1. Set a new vector Y ¼ hy1; . . .; yNi.
2. Initialize yk 0, 8 k 2 fN; . . .; 1g.
3. Then, check the feasibility of Y. If Y is still feasible, it

means that the column is redundant; thus, let xik 0

and decrease k in 1. Otherwise (Y is not feasible),

yk 1, and decrease k in 1.

4. Repeat step (1) to (3) for each monkey until there is no

redundancy.

4.7 Cooperation process

After the Climb and Watch-Jump Process, each monkey

will arrive at the highest mountain in his neighborhood.

However, the highest mountain will differ across all the

monkeys. The purpose of the cooperation process is to

improve the solution by cooperating with the monkey that

has the higher mountain (best position), i.e., they will move

along the direction of the best monkey. This process can

speed up the convergence rate. The optimal position is

described by X� ¼ hx�1; . . .; x�Ni. For the monkey i,

Xi ¼ hxi1; . . .; xiNi, 8 i 2 f1; . . .;Mpopg. The cooperation

process is given as follows:

1. Randomly generate a real number with a uniform

distribution u�ð0; 1Þ.

2. If u\
1

1þ e�yj
, then yj xj, or else, yj x�j ,

8 j 2 f1; . . .;Ng.
3. Update the monkey’s position, Xi Y.

In the IBMSA variation proposed in this work, new

steps to the Cooperation Process are added. These new

steps are based on the scout bee phase in an artificial

bee colony (ABC) algorithm (Karaboga and Basturk

2007), which uses a number of trials for improving a

solution, where the number is specified by the param-

eter ‘‘limit’’ L. For the IBMSA variation, this improve-

ment allows for checking if f ðYÞ have a lower cost

than f ðXÞ before replacing the values. Otherwise, the

process is repeated if, after a determined number of

iterations, the algorithm cannot find a better f ðYÞ, and

Xi is maintained.

4. Calculate f ðYÞ and f ðXiÞ. If f ðYÞ\f ðXiÞ, then the

monkey Xi is updated with Y; otherwise, do nothing.

5. Repeat steps (1) to (4) until Xi is updated or the limit

L is reached.

4.8 Somersault process

Monkeys will reach their highest mountaintops around

their initial positions after repetitions of the Climb, Watch-

Jump and Cooperation Process. To find a higher mountain,

each monkey will somersault to a new search domain. The

new position is not arbitrary, and it is limited to a certain

region by the pivot and the somersault interval. This pro-

cess can efficiently prevent monkeys falling into a local

search; however, after many iterations, the somersault

process may lose efficacy, resulting in monkeys falling into

the optimal local domain, decreasing the population

diversity. In the original MA, the monkeys will somersault

along the direction pointing to the barycenter of the current

positions for all monkeys. Here, we randomly choose a

position of a monkey as the pivot replacing the one pro-

posed by the original algorithm. For each monkey i,

Xi ¼ hxi1; . . .; xiNi, 8 i 2 f1; . . .;Mpopg, the Somersault

Process is given as follows:

1. Randomly generate a real number h from the interval

(c, d) (this interval governs the maximum distance that

monkeys can somersault, and is called the somersault

interval).

2. Randomly generate an integer k, with

k 2 f1; . . .;Mpopg. The kth monkey ðXkÞ will be the

somersault pivot.

3. Calculate yj xkj þ hðxkj � xijÞ.
4. Randomly generate a real number with a uniform

distribution /�ð0; 1Þ and compare it with yj. If yj\/;

then, yj 0, or else, yj 1. Update the positions of

monkeys Xi Y.

After repetitions of the Somersault Process, monkeys

may reach the same domain, making the Somersault Pro-

cess lose efficacy. In this case, we set a parameter called

‘‘limit’’ (equal to in ABC) to handle the case where all

monkeys run into the optimal local solution. If a prede-

termined number of trials does not improve the optimal

global solution, the monkeys are abandoned and then

reinitialized.

4.9 Termination condition

Following the six steps of this algorithm, all monkeys will

be ready for their next action. The condition for terminat-

ing the IBMSA and our variation is when the maximum

number of iterations is reached.

A binary monkey search algorithm variation for solving the set covering problem 831

123

5 Experimental results

Runs of both algorithms, IBMSA and IBMSAV, were done

for the purpose to compare them. They were implemented

in the Java programming language, and they were carried

out on a Windows 8.1 operating system with a Intel Core i3

2.50 GHz processor with 16 GB of RAM. For both algo-

rithms, the parameter initial values were given in a sam-

pling phase where we solve a instance of the set covering

problem. Then, the best setting is as follows:

Iterations ¼ 5000, Mpop ¼ 20, L ¼ 50, a ¼ 1, b ¼ 1,

c ¼ �1, d ¼ 1, and Nc ¼ Nw ¼ Iterations� 1%.

The instances resolved were taken from OR-li-

brary (Beasley 2018). Table 2 describes the group of

instance sets, number of rows or constraints (M), number of

columns or variables (N), the range of costs, density (per-

centage of non-zeroes in the matrix) and if the optimal

solution is known or unknown.

The results are evaluated using the relative percentage

deviation (RPD). The RPD value quantifies the deviation of

the objective function value Zmin from Zopt that in our

experiment is the minimal best-known value for each

instance, and it is calculated as follows:

RPD ¼ Zmin � Zopt
Zopt

� �
100 ð8Þ

If the RPD value reaches zero percent, we state that the

algorithm has found the optimal value.

5.1 IBMSAV versus other optimization
techniques

To evaluate the performance of our approach, we perform a

comparison with different approximation techniques: bin-

ary cat swarm optimization (BCSO) (Crawford et al.

2015a), binary firefly optimization (BFO) (Crawford et al.

2014a), binary shuffled frog leaping algorithm

(BSFLA) (Crawford et al. 2015b), binary artificial bee

colony (BABC) (Crawford et al. 2014b) and binary elec-

tromagnetism-like algorithm (BELA) (Soto et al. 2015c).

Tables 3, 4, 5, and 6 illustrate that the proposed varia-

tion is able to obtain competitive results in contrast to those

modern optimization techniques.

Evaluating group 4, we can see that our approach is able

to find all optimum values, while BFO finds only two

optimum values. For other metaheuristics, these instances

were hard to solve.

If we only consider group 5, it is possible to observe that

BFO, BSFLA, and BABC achieve three, three, and two

optimal values, respectively. Now, analyzing BCSO and

BELA, we see they show a poor performance, obtaining

zero optimal values. However, for this group, our approach

can find all the best-known values again.

Comparing the results for groups 6, A and B, we can

state that the proposed variation works better than other

bio-inspired optimization algorithms, as these others solve

only some instances, in contrast to IBMSAV, which

resolves 100% of cases.

For group C and D, the IBMSAV shows outstanding

behavior, obtaining 4 out of 5 and 5 out of 5 optimum

values, respectively. In contrast, approximate methods do

not resolve more than two instances each.

Finally, for the largest instances—from group NRE to

group NRH—the variation of the algorithm obtains better

values than their competitors.

5.2 Monkey search algorithms comparison

In this section, we compare the improved binary monkey

search algorithm (IBMSA) with the proposed variation

(IBMSAV), analyzing their performance and efficiency.

Tables 7 and 8 illustrate the results obtained for all

Table 2 Instances of set

covering problem taken from

the Beasley’s OR-Library

Instance group Instance data

M N Cost range Density % Best known Zopt

4 200 1000 [1, 100] 2 Known

5 200 2000 [1, 100] 2 Known

6 200 1000 [1, 100] 5 Known

A 300 3000 [1, 100] 2 Known

B 300 3000 [1, 100] 5 Known

C 400 4000 [1, 100] 2 Known

D 400 4000 [1, 100] 5 Known

NRE 500 5000 [1, 100] 10 Unknown (except NRE.1)

NRF 500 5000 [1, 100] 20 Unknown (except NRF.1)

NRG 1000 10,000 [1, 100] 2 Unknown (except NRG.1)

NRH 1000 10,000 [1, 100] 5 Unknown

832 B. Crawford et al.

123

Table 3 Results for instance set

of groups 4 and 5
Zopt Instance 4

1 2 3 4 5 6 7 8 9 10
429 512 516 494 512 560 430 492 641 514

IBMSAV Zmin 429 512 516 494 512 560 430 492 641 514

Zavg 430 514 516 502 515 561 430 497 645 516

RPD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BCSO Zmin 459 570 590 547 545 637 462 546 711 537

Zavg 480 594 607 578 554 650 467 567 725 552

RPD 7 11.3 14.3 10.7 6.4 13.8 7.4 11 10.9 4.5

BFO Zmin 429 517 519 495 514 563 430 497 655 519

Zavg 430 517 522 497 515 565 430 499 658 523

RPD 0.00 0.97 0.58 0.2 0.39 0.53 0.00 1.01 2.18 0.97

BSFLA Zmin 430 516 520 501 514 563 431 497 656 518

Zavg 430 518 520 504 514 563 432 499 656 519

RPD 0.23 0.78 0.78 1.42 0.39 0.54 0.23 1.02 2.34 0.78

BELA Zmin 447 559 537 527 527 607 448 509 682 571

Zavg 448 559 539 530 529 608 449 512 682 571

RPD 4.20 9.18 4.07 6.68 2.93 8.39 4.19 3.46 6.40 11.09

BABC Zmin 430 513 519 495 514 561 431 493 649 517

Zavg 430 513 521 496 517 565 434 494 651 519

RPD 0.23 0.20 0.58 0.20 0.39 0.18 0.23 0.20 0.93 0.58

Zopt Instance 5

1 2 3 4 5 6 7 8 9 10
253 302 226 242 211 213 293 288 279 265

IBMSAV Zmin 253 302 226 242 211 213 293 288 279 265

Zavg 253 307 229 242 213 213 293 288 281 267

RPD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BCSO Zmin 279 339 247 251 230 232 332 320 295 285

Zavg 287 340 251 253 230 243 338 330 297 287

RPD 10.3 12.3 9.3 3.7 9 8.9 13.3 11.1 5.7 7.5

BFO Zmin 257 309 229 242 211 213 298 291 284 268

Zavg 260 311 233 242 213 213 301 292 284 270

RPD 1.58 2.31 1.32 0.00 0.00 0.00 1.7 1.04 1.79 1.13

BSFLA Zmin 254 307 228 242 211 213 297 291 281 265

Zavg 255 307 230 242 213 214 299 293 283 266

RPD 0.4 1.66 0.88 0.00 0.00 0.00 1.37 1.04 0.72 0.00

BELA Zmin 280 318 242 251 225 247 316 315 314 280

Zavg 281 321 240 252 227 248 317 317 315 282

RPD 10.67 5.30 7.08 3.72 6.64 15.96 7.85 9.38 12.54 5.66

BABC Zmin 254 309 229 242 211 214 298 289 280 267

Zavg 255 309 233 245 212 214 301 291 281 270

RPD 0.40 2.32 1.33 0.00 0.00 0.47 1.71 0.35 0.36 0.75

A binary monkey search algorithm variation for solving the set covering problem 833

123

Table 4 Results for instance groups 6, A, B, and C

Zopt Instance 6 Instance A

1 2 3 4 5 1 2 3 4 5

138 146 145 131 161 253 252 232 234 236

IBMSAV Zmin 138 146 145 131 161 253 252 232 234 236

Zavg 138 146 148 132 163 253 253 234 239 241

RPD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BCSO Zmin 151 152 160 138 169 286 274 257 248 244

Zavg 160 157 164 142 173 287 276 263 251 244

RPD 9.4 4.1 10.3 5.3 5 13 8.7 10.8 6 3

BFO Zmin 138 147 147 131 164 255 259 238 235 236

Zavg 140 149 150 131 157 256 261 240 237 237

RPD 0.00 0.68 1.37 0.00 1.86 0.79 2.77 2.58 0.42 0.00

BSFLA Zmin 140 147 147 131 166 255 260 237 235 236

Zavg 141 147 148 133 169 258 260 239 238 239

RPD 1.45 0.68 1.38 0.00 3.11 0.79 3.17 2.16 0.43 0.00

BELA Zmin 152 160 160 140 184 261 279 252 250 241

Zavg 152 161 163 142 187 264 281 253 252 243

RPD 10.14 9.59 10.34 6.87 14.29 3.16 10.71 8.62 6.84 2.12

BABC Zmin 142 147 148 131 165 254 257 235 236 236

Zavg 143 150 149 133 167 254 259 238 237 238

RPD 2.90 0.68 2.07 0.00 2.48 0.40 1.98 1.29 0.85 0.00

Zopt Instance B Instance C

1 2 3 4 5 1 2 3 4 5

69 76 80 79 72 227 219 243 219 215

IBMSAV Zmin 69 76 80 79 72 227 219 244 219 215

Zavg 73 79 84 83 72 229 219 248 221 217

RPD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.004 0.00 0.00

BCSO Zmin 79 86 85 89 73 242 240 277 250 243

Zavg 79 89 85 89 73 242 241 278 250 244

RPD 14.5 13.2 6.3 12.7 1.4 6.6 9.6 14 12.3 13

BFO Zmin 71 78 80 80 72 230 223 253 225 217

Zavg 72 78 80 81 73 232 224 254 227 219

RPD 2.89 2.63 0.00 1.26 0.00 1.32 1.82 4.11 2.73 0.93

BSFLA Zmin 70 76 80 79 72 229 223 253 227 217

Zavg 70 77 80 80 73 231 225 253 228 218

RPD 1.45 0.00 0.00 0.00 0.00 0.88 1.83 4.12 3.65 0.93

BELA Zmin 86 88 85 84 78 237 237 271 246 224

Zavg 87 88 87 88 81 238 239 271 248 225

RPD 24.64 15.79 6.25 6.33 8.33 4.41 8.22 11.52 12.33 4.19

BABC Zmin 70 78 80 80 72 231 222 254 231 216

Zavg 70 79 80 81 74 233 223 255 233 217

RPD 1.45 2.63 0.00 1.27 0.00 1.76 1.37 4.53 5.48 0.47

834 B. Crawford et al.

123

Table 5 Results for instance groups D, NRE, NRF, and NRG

Zopt Instance

Instance D Instance NRE

1 2 3 4 5 1 2 3 4 5

60 66 72 62 61 29 30 27 28 28

IBMSAV Zmin 60 66 72 62 61 29 30 28 28 28

Zavg 63 69 77 62 61 29 31 28 28 28

RPD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.037 0.00 0.00

BCSO Zmin 65 70 79 64 65 29 34 31 32 30

Zavg 66 70 81 67 66 30 34 32 33 30

RPD 8.3 6.1 9.7 3.2 6.6 0.00 13.3 14.8 14.3 7.1

BFO Zmin 60 68 75 62 63 29 32 29 29 29

Zavg 61 68 77 62 63 31 32 30 31 29

RPD 0.00 3.03 4.16 0.00 3.27 0.00 6.66 7.4 3.57 3.57

BSFLA Zmin 60 67 75 63 63 29 31 28 29 28

Zavg 62 68 77 65 66 29 32 28 30 31

RPD 0.00 1.52 4.17 1.61 3.28 0.00 3.33 3.7 3.57 0.00

BELA Zmin 62 73 79 67 66 30 35 34 33 30

Zavg 62 74 81 69 67 31 35 34 34 31

RPD 3.33 10.61 9.72 8.06 8.20 3.45 16.67 25.93 17.86 7.14

BABC Zmin 60 68 76 63 63 29 32 29 29 29

Zavg 61 68 77 65 66 33 32 31 30 32

RPD 0.00 3.03 5.56 1.61 3.28 0.00 6.67 7.41 3.57 3.57

Zopt Instance

Instance NRF Instance NRG

1 2 3 4 5 1 2 3 4 5

14 15 14 14 13 176 154 166 168 168

IBMSAV Zmin 14 15 14 14 13 176 156 166 171 169

Zavg 15 15 16 17 14 177 156 169 171 169

RPD 0.00 0.00 0.00 0.00 0.00 0.00 0.012 0.00 0.029 0.005

BCSO Zmin 17 18 17 17 15 190 165 187 179 181

Zavg 17 18 17 17 16 193 166 188 183 184

RPD 21.4 20 21.4 21.4 15.4 8 7.1 20.6 6.5 7.7

BFO Zmin 15 16 16 15 15 185 161 175 176 177

Zavg 17 16 17 18 19 191 163 177 176 181

RPD 7.14 6.66 14.28 7.14 15.38 5.11 4.54 5.42 4.76 5.35

BSFLA Zmin 15 15 16 15 15 182 161 173 173 174

Zavg 15 15 17 16 17 183 161 174 177 174

RPD 7.14 0.00 14.29 7.14 15.38 3.41 4.55 4.22 2.98 3.57

BELA Zmin 17 18 17 17 16 194 176 184 196 198

Zavg 17 18 18 19 17 196 176 185 197 199

RPD 21.43 20 21.43 21.43 23.08 10.23 14.29 10.84 16.67 17.86

BABC Zmin 14 16 16 15 15 183 162 174 175 179

Zavg 15 16 17 17 16 184 163 175 177 181

RPD 0.00 6.67 14.29 7.14 15.38 3.98 5.19 4.82 4.17 6.55

A binary monkey search algorithm variation for solving the set covering problem 835

123

instances of the set covering problem. We use bold font

when our approach (IBMSAV) finds the optimal value, and

we underline the better value of each algorithm.

It is possible to see that the proposed approach is more

effective than IBMSA. IBMSAV resolves correctly 55 of

65 instances (84.62%), while IBMSA does not overcome

45% of cases. Now, in 33 instances, IBMSAV has a better

yield than IBMSA. In only one test does IBMSA perform

better (NRG.4), but the difference is not significant.

If we consider the times required for reaching the

solutions, we may observe that the times are very similar

for the two algorithms. However, there is a small difference

in favor of the IBMSA, with respect to IBMSAV, but this

can be explained because extra time is required to recal-

culate the Climbing and Cooperation Processes.

Now, in order to show a significant difference between

the improved binary monkey search algorithm and its

variation, we perform a contrast statistical test for each

instance through the Kolmogorov–Smirnov–Lilliefors test

to determine the independence of samples (Lilliefors 1967)

and the Wilcoxon’s signed rank test (Mann and Donald

1947) to compare the results statistically.

For both tests, we consider a hypothesis evaluation,

which is analyzed assuming a p value of 0.05, i.e., values

smaller than 0.05 mean that the corresponding hypothesis

cannot be assumed. Both tests were conducted using GNU

Octave (Eaton 2018).

The first test allows for us to analyze the independence

of samples by determining whether the Zmin obtained from

the 30 executions of each instance come from a normal

distribution or whether they are independent. To proceed,

we propose the following hypotheses:

• H0: states that Zmin follows a normal distribution.

• H1: states the opposite.

The conducted test has yielded p value lower than 0.05;

therefore, H0 cannot be assumed.

Then, as samples are independent and it cannot be

assumed that they follow a normal distribution, it is not

feasible to use the central limit theorem to approximate the

distribution of the sample mean as Gaussian. Therefore, we

assume the use of a non-parametric test for evaluating the

heterogeneity of samples. For that, we use the Wilcoxon’s

signed rank test. This is a paired test that compare the

medians of two distributions. To proceed, we propose the

following new hypotheses:

• H0: ~Zmin achieved by IBMSA is better than ~Zmin

achieved by IBMSAV.

• H1: states the opposite.

Table 9 compares the improved optimization algorithm

versus the improved variation approach for all tested

instances via the Wilcoxon’s signed rank test. As the sig-

nificance level is also established to be 0.05, smaller values

than 0.05 mean that H0 cannot be assumed. A bold font is

used to indicate a better value of the metaheuristic stated in

the column of the table. As an example, for instance 4.1,

the improved variation is better than the improved version

as its value is lower than 0.05; thus, H0 cannot be assumed.

In the other cases, there is not enough information.

According to the results, for p values lower than 0.05,

for the improved optimization algorithm, there are 10 such

results; for the improved variation approach, there are 36

results. The rest of the tests do not provide significant

information because p values are greater than 0.05 but less

than 0.95. These results illustrate that the performance of

the improved variation is better than the improved binary

monkey search algorithm.

6 Conclusions

The set covering problem is a well-known NP-hard prob-

lem of combinatorial analytics. This problem consists in

finding solutions covering the needs at a lower cost. Those

needs can be services to cities, load balancing in produc-

tion lines or data-bank selections. In this work, we study

the solution of this problem through an algorithm based on

swarm intelligence inspired from the mountain-climbing

behavior of monkeys, called the improved binary monkey

Table 6 Results for instances of group NRH

Zopt Instance NRH

1 2 3 4 5

63 63 59 58 55

IBMSAV Zmin 65 67 64 63 62

Zavg 65 67 65 63 62

RPD 0.032 0.063 0.085 0.086 0.127

BCSO Zmin 70 67 68 66 61

Zavg 71 67 70 67 62

RPD 11.1 6.3 15.3 13.8 10.9

BFO Zmin 69 66 65 63 59

Zavg 70 66 67 65 60

RPD 9.52 4.76 10.16 6.77 7.27

BSFLA Zmin 68 66 62 63 59

Zavg 69 66 63 64 61

RPD 7.94 4.76 5.08 8.62 7.27

BELA Zmin 70 71 68 70 69

Zavg 71 71 70 72 69

RPD 11.11 12.70 15.25 20.69 25.45

BABC Zmin 70 69 66 64 60

Zavg 71 72 67 64 61

RPD 11.11 9.52 11.86 10.34 9.09

836 B. Crawford et al.

123

Table 7 Instances of set covering problem taken from the Beasley’s OR-Library (Groups 4, 5, 6, A, B, and C)

Instance Zopt Monkey search algorithm

IBMSA IBMSAV

Zmin RPD Times (ms) Zmin RPD Times (ms)

4.1 429 430 0.002 1009.2 429 0.00 1167.2

4.2 512 512 0.00 1011.2 512 0.00 1021.3

4.3 516 516 0.00 1701.5 516 0.00 1822.4

4.4 494 495 0.002 1837.4 494 0.00 1982.3

4.5 512 514 0.004 2014.3 512 0.00 2412.5

4.6 560 560 0.00 2314.4 560 0.00 2402.4

4.7 430 430 0.00 2424.4 430 0.00 2443.3

4.8 492 494 0.004 2921.0 492 0.00 3332.5

4.9 641 644 0.005 2813.2 641 0.00 3015.5

4.10 514 515 0.002 2983.4 514 0.00 3523.3

5.1 253 253 0.00 2943.9 253 0.00 3914.6

5.2 302 305 0.01 3112.3 302 0.00 3344.3

5.3 226 228 0.00 2935.3 226 0.00 3013.4

5.4 242 243 0.004 2993.4 242 0.00 4002.3

5.5 211 211 0.00 2650.3 211 0.00 3224.3

5.6 213 213 0.00 3352.4 213 0.00 3932.4

5.7 293 293 0.00 2934.5 293 0.00 4034.6

5.8 288 290 0.007 3043.4 288 0.00 3440.1

5.9 279 281 0.007 4224.6 279 0.00 3922.1

5.10 265 265 0.00 3881.4 265 0.00 4162.4

6.1 138 140 0.014 4434.7 138 0.00 4941.3

6.2 146 147 0.007 4110.2 146 0.00 3974.2

6.3 145 145 0.00 3712.2 145 0.00 4672.3

6.4 131 131 0.00 5542.3 131 0.00 5601.3

6.5 161 161 0.00 4872.3 161 0.00 5721.3

A.1 253 253 0.00 3324.4 253 0.00 4454.1

A.2 252 253 0.004 4879.6 252 0.00 4212.4

A.3 232 233 0.004 4314.5 232 0.00 5739.1

A.4 234 234 0.00 4808.5 234 0.00 5403.4

A.5 236 236 0.00 5013.3 236 0.00 4973.5

B.1 69 69 0.00 4944.3 69 0.00 5924.3

B.2 76 76 0.00 4302.3 76 0.00 4487.1

B.3 80 80 0.00 4435.3 80 0.00 4469.3

B.4 79 79 0.00 4962.1 79 0.00 5429.4

B.5 72 72 0.00 4933.3 72 0.00 5151.3

C.1 227 229 0.009 5641.1 227 0.00 5719.6

C.2 219 219 0.00 4991.4 219 0.00 4974.5

C.3 243 245 0.008 5090.6 244 0.004 4913.5

C.4 219 219 0.00 4983.7 219 0.00 4339.4

C.5 215 216 0.004 4776.6 215 0.00 4981.2

D.1 60 60 0.00 4621.9 60 0.00 4833.6

D.2 66 67 0.015 5034.2 66 0.00 5626.7

D.3 72 73 0.014 5809.8 72 0.00 5935.6

D.4 62 62 0.00 5083.7 62 0.00 5813.5

D.5 61 61 0.00 6112.5 61 0.00 6134.3

A binary monkey search algorithm variation for solving the set covering problem 837

123

search algorithm (IBMSA), and a new variation in the

Climbing and Cooperation Processes (IBMSAV) providing

more exploratory capabilities.

We have tested 65 non-unicost instances from Beasley’s

OR-Library where several global optimum values, which

were not reached using the basic improved binary opti-

mization algorithm, were achieved via the improved vari-

ation approach. Both approaches have been evaluated by

nonparametric statistical tests, and the results are conclu-

sive. Moreover, the IBMSAV was shown to be slightly

better than other optimization techniques; thus, we strongly

believe that this variation approach can improve with a

specific configuration for each problem.

As future work, we plan to experiment on self-adaptive

approaches in recent bio-inspired algorithms and to provide

a more extensive comparison of techniques for solving the

set covering problem. The integration of online parameter

control can lead the research toward new study lines, such

as dynamically selecting the best binarization strategy

during solving according to performance indicators as

analogously studied in Soto et al. (2013, 2015a, b). Finally,

seeing the positive results of integrating the online control

technique, we can think about improving internal resolu-

tion processes (local search, for example) by applying

machine and deep learning (Calvet et al. 2017; Fink 2007;

Iba 2018; Memeti et al. 2018).

Table 8 Instances of set covering problem taken from the Beasley’s OR-Library (Groups D, NRE, NRF, NRG, and NRH)

Instance Zopt Monkey search algorithm

IBMSA IBMSAV

Zmin RPD Times (ms) Zmin RPD Times (ms)

NRE.1 29 30 0.034 6011.4 29 0.00 6782.4

NRE.2 30 31 0.033 6577.4 30 0.00 7222.4

NRE.3 27 28 0.037 6888.5 28 0.037 7184.2

NRE.4 28 29 0.036 6891.1 28 0.00 6775.4

NRE.5 28 28 0.00 6801.7 28 0.00 7615.1

NRF.1 14 14 0.00 6889.4 14 0.00 6801.4

NRF.2 15 15 0.00 7112.7 15 0.00 6876.5

NRF.3 14 17 0.214 6828.2 14 0.00 9266.3

NRF.4 14 16 0.143 7463.6 14 0.00 10053.4

NRF.5 13 14 0.077 7323.2 13 0.00 8247.9

NRG.1 176 182 0.034 8125.8 176 0.00 8541.6

NRG.2 154 160 0.039 7838.9 156 0.012 9092.8

NRG.3 166 170 0.024 8301.7 166 0.00 10353.8

NRG.4 168 170 0.012 8766.9 171 0.029 11012.9

NRG.5 168 170 0.012 8843.6 169 0.006 12801.4

NRH.1 63 66 0.048 9556.5 65 0.032 10223.5

NRH.2 63 67 0.063 8576.9 67 0.063 12776.5

NRH.3 59 64 0.085 12861.2 64 0.085 14395.4

NRH.4 58 64 0.103 10978.2 63 0.086 12098.4

NRH.5 55 63 0.145 9833.2 62 0.127 13791.3

838 B. Crawford et al.

123

Acknowledgements Broderick Crawford is supported by Grant

CONICYT/FONDECYT/REGULAR/1171243. Ricardo Soto is sup-

ported by Grant CONICYT/FONDECYT/REGULAR/1190129.

Rodrigo Olivares is supported by CONICYT/FONDEF/IDeA/

ID16I10449, STIC-AMSUD/17STIC- 03, FONDECYT/MEC/

MEC80170097 and Postgraduate Grant Pontificia Universidad Cató-

lica de Valparaı́so (INF-PUCV 2015-2019).

References

Affenzeller M, Wagner S, Winkler S (2007) Self-adaptive population

size adjustment for genetic algorithms. Computer aided systems

theory EUROCAST 2007. Springer, Berlin, pp 820–828

Akay B, Karaboga D (2012) A modified artificial bee colony

algorithm for real-parameter optimization. Inf Sci 192:120

Table 9 Statistical test for all instances of the set covering problem

Instance

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

IBMSA – – – – – 0.04 – – – 0.05

IBMSAV 0.01 0.02 – 0.02 0.01 – 0.02 – 0.04 –

Instance

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10

IBMSA – – – – – 0.01 0.05 – 0.03 –

IBMSAV 0.01 0.03 0.01 0.01 – – – 0.05 – 0.05

Instance

6.1 6.2 6.3 6.4 6.5 A.1 A.2 A.3 A.4 A.5

IBMSA – – – – – – – – 0.01 –

IBMSAV 0.04 0.05 0.01 – 0.01 – 0.02 0.03 – 0.05

Instance

B.1 B.2 B.3 B.4 B.5 C.1 C.2 C.3 C.4 C.5

IBMSA – 0.01 – – – – 0.01 – – –

IBMSAV 0.02 – 0.02 0.05 – 0.05 – – 0.03 0.02

Instance

D.1 D.2 D.3 D.4 D.5 NRE.1 NRE.2 NRE.3 NRE.4 NRE.5

IBMSA – – – – – – 0.01 – – –

IBMSAV 0.05 0.05 – – 0.01 0.03 – 0.02 0.04 0.03

Instance

NRF.1 NRF.2 NRF.3 NRF.4 NRF.5 NRG.1 NRG.2 NRG.3 NRG.4 NRG.5

IBMSA – – – – – – – – – –

IBMSAV 0.01 0.01 – 0.01 – 0.05 – 0.01 0.01 0.03

Instance

NRH.1 NRH.2 NRH.3 NRH.4 NRH.5

IBMSA – – – 0.01 –

IBMSAV 0.03 0.01 – – 0.05

A binary monkey search algorithm variation for solving the set covering problem 839

123

Balas E (1997) A dynamic subgradient-based branch-and-bound

procedure for set covering. Locat Sci 5(3):203

Basset MA, Zhou Y (2018) An elite opposition-flower pollination

algorithm for a 0–1 knapsack problem. Int J Bio Inspir Comput

11(1):46. https://doi.org/10.1504/ijbic.2018.090080

Beasley J (2018) Or-library. http://people.brunel.ac.uk/*mastjjb/jeb/

orlib/scpinfo.html. Accessed 14 Feb 2018

Beasley J (1987) An algorithm for set covering problem. Eur J Oper

Res 31(1):85

Bilal N, Galinier P, Guibault F (2014) An iterated-tabu-search

heuristic for a variant of the partial set covering problem.

J Heuristics 20(2):143

Brotcorne L, Laporte G, Semet F (2003) Ambulance location and

relocation models. Eur J Oper Res 147(3):451

Brusco M, Jacobs L, Thompson G (1999) A morphing procedure to

supplement a simulated annealing heuristic for cost and coverage

correlated set covering problems. Ann Oper Res 86:611

Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003)

Handbook of metaheuristics, vol 57. International series in

operations research and management science. Springer, Berlin,

pp 457–474

Calvet L, de Armas J, Masip D, Juan AA (2017) Learnheuristics:

hybridizing metaheuristics with machine learning for optimiza-

tion with dynamic inputs. Open Math 15(1):261–80

Caprara A, Fischetti M, Toth P (1999) A heuristic method for the set

covering problem. Oper Res 47(5):730

Caprara A, Fischetti M, Toth P (2000) Algorithms for the set covering

problem. Annals OR 98(1–4):353

Ceria S, Nobili P, Sassano A (1998) A lagrangian-based heuristic for

large-scale set covering problems. Math Program 81:215

Chvatal V (1979) A greedy heuristic for the set-covering problem.

Math Oper Res 4(3):233

Crawford B, Soto R, Monfroy E, Paredes F, Palma W (2011) A hybrid

ant algorithm for the set covering problem. Int J Phys Sci

6(19):4667

Crawford B, Soto R, Olivares-Suárez M, Paredes F (2014a) Advances

in intelligent systems and computing. 3rd Computer science on-

line conference 2014 (CSOC 2014), vol 285. Springer, Berlin,

pp 65–73

Crawford B, Soto R, Palma W, Johnson F, Paredes F, Olguı́n E

(2014b) Advances in swarm intelligence. Lecture notes in

computer science, vol 8794. Springer, Berlin, pp 189–196

Crawford B, Soto R, Astorga G, Garcı́a J, Castro C, Paredes F (2017)

Putting continuous metaheuristics to work in binary search

spaces. Complexity 2017:1

Crawford B, Soto R, Berrı́os N, Johnson F, Paredes F, Castro C,

Norero E (2015a) A binary cat swarm optimization algorithm for

the non-unicost set covering problem. Math Prob Eng 2015:1

Crawford B, Soto R, Peña C, Palma W, Johnson F, Paredes F (2015b)

Intelligent information and database systems. In: 7th Asian

conference, ACIIDS 2015, Bali, Indonesia, March 23–25, 2015,

Proceedings, Part II. Lecture notes in computer science, vol

9012. Springer, Berlin, pp 41–50

Cui L, Li G, Zhu Z, Wen Z, Lu N, Lu J (2017) A novel differential

evolution algorithm with a self-adaptation parameter control

method by differential evolution. Soft Comput. https://doi.org/

10.1007/s00500-017-2685-5

Day RH (1965) Letter to the editor-on optimal extracting from a

multiple file data storage system: an application of integer

programming. Oper Res 13(3):482

Dorigo M, Maniezzo V, Colorni A (1996) The ant system:

optimization by a colony of cooperating agents. IEEE Trans

Syst Man Cybern 26(1):1

Eaton JW (2018) Gnu octave. https://www.gnu.org/software/octave/

(2002). Accessed 14 Feb 2018

Eiben A, Hinterding R, Michalewicz Z (1999) Parameter control in

evolutionary algorithms. IEEE Trans Evol Comput 3(2):124

Feo TA, Resende MG (1989) A probabilistic heuristic for a

computationally difficult set covering problem. Oper Res Lett

8(2):67

Fink M (2007) Proceedings of the Eleventh international conference

on artificial intelligence and statistics, proceedings of machine

learning research (PMLR, San Juan, Puerto Rico, 2007), vol 2,

pp 115–122

Fisher ML, Kedia P (1990) Optimal solution of set covering/parti-

tioning problems using dual heuristics. Manage Sci 36(6):674

Han MF, Liao SH, Chang JY, Lin CT (2012) Dynamic group-based

differential evolution using a self-adaptive strategy for global

optimization problems. Appl Intell 39(1):41. https://doi.org/10.

1007/s10489-012-0393-5

Hartmanis J (1982) Computers and intractability: a guide to the theory

of NP-completeness. SIAM Rev 24(1):90

Holland JH (1975) Adaptation in natural and artificial systems. The

University of Michigan Press, Ann Arbor

Housos E, Elmroth T (1997) Automatic optimization of subproblems

in scheduling airline crews. Interfaces 27(5):68

Iba H (2018) Evolutionary approach to machine learning and deep

neural networks. Springer, Singapore, pp 27–75. https://doi.org/

10.1007/978-981-13-0200-8_2

Ituarte-Villarreal CM, Lopez N, Espiritu JF (2012) Using the monkey

algorithm for hybrid power systems optimization. Proc Comput

Sci 12:344

Karaboga D, Basturk B (2007) A powerful and efficient algorithm for

numerical function optimization: artificial bee colony (ABC)

algorithm. J Global Optim 39(3):459

Lan G, DePuy G (2006) On the effectiveness of incorporating

randomness and memory into a multi-start metaheuristic with

application to the set covering problem. Comput Ind Eng

51(3):362

Lanza-Gutierrez J, Crawford B, Soto R, Berrios N, Gomez-Pulido J,

Paredes F (2017) Analyzing the effects of binarization tech-

niques when solving the set covering problem through swarm

optimization. Expert Syst Appl 70:67

Li X, Yin M (2012) Self-adaptive constrained artificial bee colony for

constrained numerical optimization. Neural Comput Appl

24(3–4):723

Li X, Yin M (2015) Modified cuckoo search algorithm with self

adaptive parameter method. Inf Sci 298:80

Liang KH, Yao X, Newton CS (2001) Adapting self-adaptive

parameters in evolutionary algorithms. Appl Intell 15(3):171.

https://doi.org/10.1023/a:1011286929823

Lilliefors H (1967) On the Kolmogorov-Smirnov test for normality

with mean and variance unknown. J Am Stat Assoc 62(318):399

Mahmoudi S, Lotfi S (2015) Modified cuckoo optimization algorithm

(MCOA) to solve graph coloring problem. Appl Soft Comput

33:48

Mann H, Donald W (1947) On a test of whether one of two random

variables is stochastically larger than the other. Ann Math Stat

18(1):50

Memeti S, Pllana S, Binotto A, Kołodziej J, Brandic I (2018)

Proceedings of the international conference on learning and

optimization algorithms: theory and applications - LOPAL 18.

ACM Press. doi 10(1145/3230905):3230906

Nguyen TT, Vo DN (2015) Modified cuckoo search algorithm for

short-term hydrothermal scheduling. Int J Electr Power Energy

Syst 65:271

Olamaei J, Moradi M, Kaboodi T (2013) 18th Electric power

distribution conference, pp 1–6

Qin A, Suganthan P (2005) Self-adaptive differential evolution

algorithm for numerical optimization. In: 2005 IEEE congress on

840 B. Crawford et al.

123

https://doi.org/10.1504/ijbic.2018.090080
http://people.brunel.ac.uk/%7emastjjb/jeb/orlib/scpinfo.html
http://people.brunel.ac.uk/%7emastjjb/jeb/orlib/scpinfo.html
https://doi.org/10.1007/s00500-017-2685-5
https://doi.org/10.1007/s00500-017-2685-5
https://www.gnu.org/software/octave/
https://doi.org/10.1007/s10489-012-0393-5
https://doi.org/10.1007/s10489-012-0393-5
https://doi.org/10.1007/978-981-13-0200-8_2
https://doi.org/10.1007/978-981-13-0200-8_2
https://doi.org/10.1023/a:1011286929823

evolutionary computation (IEEE, 2005), pp 1785–1791. https://

doi.org/10.1109/cec.2005.1554904

ReVelle C, Toregas C, Falkson L (2010) Applications of the location

set covering problem. Geogr Anal 8(1):65

Roeper T, Williams E (1987) Parameter setting. In: Hyams N (ed)

The theory of parameters and syntactic development. Springer,

Netherlands, pp 191–215

Salto C, Alba E (2011) Designing heterogeneous distributed GAs by

efficiently self-adapting the migration period. Appl Intell

36(4):800. https://doi.org/10.1007/s10489-011-0297-9

Salveson ME (1995) The assembly line balancing problem. J Ind Eng

6(3):18

Soto R, Crawford B, Misra S, Palma W, Monfroy E, Castro C,

Paredes F (2013) Choice functions for autonomous search in

constraint programming: GA vs PSO. Tech Gaz 20(4):621

Soto R, Crawford B, Palma W, Monfroy E, Olivares C, Castro

Rodrigoand, Paredes F (2015a) Top- k based adaptive enumer-

ation in constraint programming. Math Prob Eng 2015:1

Soto R, Crawford B, Palma W, Galleguillos K, Castro C, Monfroy E,

Johnson F, Paredes F (2015b) Boosting autonomous search for

CSPs via skylines. Inf Sci 308:38

Soto R, Crawford B, Muñoz A, Johnson F, Paredes F (2015c)

Advances in intelligent systems and computing. Artificial

Intelligence Perspectives and Applications, vol 347. Springer,

Berlin, pp 89–97

Soto R, Crawford B, Olivares R, Barraza J, Figueroa I, Johnson F,

Paredes F, Olguı́n E (2017) Solving the non-unicost set covering

problem by using cuckoo search and black hole optimization.

Nat Comput 16(2):213

Spall J (1992) Multivariate stochastic approximation using a simul-

taneous perturbation gradient approximation. IEEE Trans Autom

Control 37(3):332

Stutzle T, Lopez-Ibanez M, Pellegrini P, Maur M, Montes de Oca M,

Birattari M, Dorigo M (2012) What is autonomous search?.

Parameter adaptation in ant colony optimization. Springer,

Berlin, pp 191–215

Valenzuela C, Crawford B, Soto R, Monfroy E, Paredes F (2014) A

2-level metaheuristic for the set covering problem. Int J Comput

Commun Control 7(2):377

Vasko FJ, Wilson GR (1984) Using a facility location algorithm to

solve large set covering problems. Oper Res Lett 3(2):85

Vasko FJ, Wolf FE, Stott KL (1987) Optimal selection of ingot sizes

via set covering. Oper Res 35(3):346

Xin C, Zhou Y, Zhonghua T, Qifang L (2017) A hybrid algorithm

combining glowworm swarm optimization and complete 2-opt

algorithm for spherical travelling salesman problems. Appl Soft

Comput 58:104. https://doi.org/10.1016/j.asoc.2017.04.057

Yang XS (2010) Nature Inspired Cooperative Strategies for opti-

mization (NICSO), vol 284. Studies in computational intelli-

gence. Springer, Berlin, pp 65–74

Yang XS, He X (2013) Firefly algorithm: recent advances and

applications. Int J Swarm Intell 1(1):36. https://doi.org/10.1504/

ijsi.2013.055801

Yelbay B, Birbil Şİ, Bülbül K (2014) The set covering problem

revisited: an empirical study of the value of dual information.

JIMO 11(2):575

Yi W, Gao L, Li X, Zhou Y (2014) A new differential evolution

algorithm with a hybrid mutation operator and self-adapting

control parameters for global optimization problems. Appl Intell

42(4):642. https://doi.org/10.1007/s10489-014-0620-3

Zhang S, Zhou Y, Li Z, Pan W (2016) Grey wolf optimizer for

unmanned combat aerial vehicle path planning. Adv Eng Softw

99:121. https://doi.org/10.1016/j.advengsoft.2016.05.015

Zhao R, Tang W (2008) Monkey algorithm for global numerical

optimization. J Uncertain Syst 2(3):165

Zhou Y (2016) Hybrid symbiotic organisms search algorithm for

solving 0–1 knapsack problem. Int J Bio Inspir Comput 1(1):1.

https://doi.org/10.1504/ijbic.2016.10004304

Zhou Y, Chen H, Zhou G (2014) Invasive weed optimization

algorithm for optimization no-idle flow shop scheduling prob-

lem. Neurocomputing 137:285. https://doi.org/10.1016/j.neu

com.2013.05.063

Zhou Y, Luo Q, Chen H, He A, Wu J (2015a) A discrete invasive

weed optimization algorithm for solving traveling salesman

problem. Neurocomputing 151:1227. https://doi.org/10.1016/j.

neucom.2014.01.078

Zhou Y, Li L, Ma M (2015b) A complex-valued encoding bat

algorithm for solving 0–1 knapsack problem. Neural Process

Lett 44(2):407. https://doi.org/10.1007/s11063-015-9465-y

Zhou Y, Bao Z, Luo Q, Zhang S (2016a) A complex-valued encoding

wind driven optimization for the 0–1 knapsack problem. Appl

Intell 46(3):684. https://doi.org/10.1007/s10489-016-0855-2

Zhou Y, Chen X, Zhou G (2016b) An improved monkey algorithm for

a 0–1 knapsack problem. Appl Soft Comput 38:817

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

A binary monkey search algorithm variation for solving the set covering problem 841

123

https://doi.org/10.1109/cec.2005.1554904
https://doi.org/10.1109/cec.2005.1554904
https://doi.org/10.1007/s10489-011-0297-9
https://doi.org/10.1016/j.asoc.2017.04.057
https://doi.org/10.1504/ijsi.2013.055801
https://doi.org/10.1504/ijsi.2013.055801
https://doi.org/10.1007/s10489-014-0620-3
https://doi.org/10.1016/j.advengsoft.2016.05.015
https://doi.org/10.1504/ijbic.2016.10004304
https://doi.org/10.1016/j.neucom.2013.05.063
https://doi.org/10.1016/j.neucom.2013.05.063
https://doi.org/10.1016/j.neucom.2014.01.078
https://doi.org/10.1016/j.neucom.2014.01.078
https://doi.org/10.1007/s11063-015-9465-y
https://doi.org/10.1007/s10489-016-0855-2

	A binary monkey search algorithm variation for solving the set covering problem
	Abstract
	Introduction
	Related works
	Problem statement
	Monkey search algorithm
	Coding method
	Initial population
	Climbing process
	Watch jump process
	Greedy strategy: repair process
	Redundancy reduction process
	Cooperation process
	Somersault process
	Termination condition

	Experimental results
	IBMSAV versus other optimization techniques
	Monkey search algorithms comparison

	Conclusions
	Acknowledgements
	References

