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a b s t r a c t 

The Set Covering Problem (SCP) is one of the classical Karp’s 21 NP-complete problems. Although this is 

a traditional optimization problem, we find many papers assuming metaheuristics for solving the SCP in 

the current literature. However, while the SCP is a discrete problem, most metaheuristics are defined for 

solving continuous optimization problems, specially Swarm Intelligence Algorithms (SIAs). Hence, such 

algorithms should be adapted for working on the discrete scope, but most authors did not perform any 

study to select a concrete binarization approach. This situation might lead to the conclusion that se- 

lecting a concrete binarization technique does not influence the behavior of the algorithm, but rather 

the general approach of the metaheuristic. This circumstance led us to write this paper focusing on the 

inherent difficulty in binarization of metaheuristics designed for continuous optimization, when solving 

a discrete optimization problem, concretely the SCP. To this end, we consider a recent SIA inspired by 

the behavior of cats and adapted to the discrete scope, which is called Binary Cat Swarm Optimization 

(BCSO). We replace the binarization technique assumed in the original BCSO by forty different approaches 

from the current literature. The results obtained while solving a standard SCP benchmark are analyzed 

through a widely accepted statistical method, concluding that it is crucial to select an adequate binariza- 

tion approach to ensure that the solving algorithm reaches its full potential. Thus, the task of adapting a 

metaheuristic to the discrete scope is not a simple matter and should be carefully studied. To this end 

and as a result of this study, we give some recommendations to perform this task. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The Set Covering Problem (SCP) is one of the classical 21 prob-

ems shown to be NP-complete by Karp (1972) and whose op-

imization version is NP-hard ( Garey & Johnson, 1979 ). Although

he SCP is a traditional optimization problem, it is widely consid-

red in the current literature for designing expert systems, which

mulate the decision-making ability of human experts in a given

eld ( Reggia, Nau, & Wang, 1983 ). For example, we find works

onsidering the SCP for facility location ( Farahani, Asgari, Heidari,

osseininia, & Goh, 2012 ), ship scheduling ( de Mare, Spliet, &

uisman, 2014 ), production planning ( Adulyasak, Cordeau, & Jans,

015 ), crew scheduling ( Chen & Shen, 2013; Juette & Thonemann,
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012 ), vehicle routing ( Bai, Xue, Chen, & Roberts, 2015; Cacchiani,

emmelmayr, & Tricoire, 2014; Vidal, Crainic, Gendreau, & Prins,

013 ), musical composition ( Simeone, Nouno, Mezzadri, & Lari,

014 ), information retrieval ( Zhang, Wei, & Chen, 2014 ), and terri-

ory design ( Elizondo-Amaya, Rios-Mercado, & Diaz, 2014 ), among

any others. 

Chvatal (1979) defined the SCP as follows. Given a set M of m

bjects and a collection S of n sets of these objects, each set with

 non-negative cost associated. The goal is to find a minimum cost

amily of subsets C ⊆ S , such that each element i ∈ M belongs to

t least one subset of the family C . 

Some authors solved the SCP by applying exact techniques,

uch as branch-and-bound and branch-and-cut algorithms. How-

ver, such methods are not recommended for solving this type of

omplex problems, because computational times rise exponentially

ith the problem dimension. 

Instead, approximate techniques should be considered, such as

etaheuristics. This type of techniques is successfully considered

n the literature for solving NP-hard problems from different fields,

http://dx.doi.org/10.1016/j.eswa.2016.10.054
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.10.054&domain=pdf
mailto:jmlanza@unex.es
mailto:broderick.crawford@pucv.cl
mailto:ricardo.soto@pucv.cl
mailto:natalia.berrios.p@mail.pucv.cl
mailto:jangomez@unex.es
mailto:fernando.paredes@udp.cl
http://dx.doi.org/10.1016/j.eswa.2016.10.054


68 J.M. Lanza-Gutierrez et al. / Expert Systems With Applications 70 (2017) 67–82 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Acronyms. 

ACO Ant Colony Optimization 

ABC Artificial Bee Colony 

BCSO Binary Cat Swarm Optimization 

BGSA Binary Gravitational Search Algorithm 

BMOA Binary Magnetic Optimization Algorithm 

BPSO Binary Particle Swarm Optimization 

EA Evolutionary Algorithm 

EM-like ElectroMagnetism-like 

FA Firefly Algorithm 

FFOA Fruit Fly Optimization Algorithm 

RPD Relative Percentage Deviation 

SCP Set Covering Problem 

SFLA Shuffled Frog Leaping Algorithm 

SIA Swarm Intelligence Algorithm 

TA Trajectory Algorithm 

TLBO Teaching-Learning-Based Optimization 

RVP Relative Variation Percentage 
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including the SCP ( Dasgupta & Michalewicz, 2013 ). However, while

the SCP is defined as a discrete optimization problem, many meta-

heuristics are designed for solving continuous optimization prob-

lems, specially Swarm Intelligence Algorithms (SIAs). Thus, such

metaheuristics should be adapted for working on the discrete

search space. 

There are many SIAs adapted for solving general discrete opti-

mization problems, such as Binary Gravitational Search Algorithm

(BGSA) ( Rashedi, Nezamabadi-Pour, & Saryazdi, 2010 ), Binary Mag-

netic Optimization Algorithm (BMOA) ( Mirjalili & Hashim, 2012 ),

and Binary Cat Swarm Optimization (BCSO) ( Sharafi, Khanesar, &

Teshnehlab, 2013 ). Usually, the algorithms are adapted by follow-

ing the two-step binarization method introduced by Kennedy and

Eberhart (1997) in their approach of Binary Particle Swarm Opti-

mization (BPSO) for transforming real numbers into binary ones.

In this case, the authors explained how to get a new binary so-

lution according to the particle velocity, which is a real num-

ber. The method followed by the authors is as follows. Firstly, we

map the real value to a number in the interval [0, 1] through a

transfer function. Secondly, we transform the number in the in-

terval [0, 1] into a binary value through a discretization func-

tion. In this line, there are eight major transfer functions and

five major discretization functions in the current literature, de-

noted as S 1 , S 2 , . . . , S 4 , V 1 , V 2 , . . . , V 4 and D 1 , D 2 , . . . , D 8 , respectively

( Crawford et al., 2015c; Mirjalili & Lewis, 2013 ). 

Most authors did not do any study to select a concrete bina-

rization approach when adapting a metaheuristic. This situation

might lead to the conclusion that selecting a concrete binariza-

tion technique does not influence the behavior of the algorithm,

but rather the general approach of the metaheuristic. To the best

of our knowledge, this is the first work performing this study in

the literature. We do the following three main tasks throughout

this study: 

• We select a recent SIA from the current literature, which was

initially designed for continuous optimization and later adapted

to the discrete scope. Specifically, the BCSO algorithm inspired

by the behavior of cats, whose original continuous approach

was proposed by Chu, Tsai, and Pan (2006) . 
• The authors of BCSO considered a transfer and discretization

function, without performing any formal study to this task. We

change the original formulation of BCSO by combining the eight

transfer functions and the five discretization functions intro-

duced before, i.e. , we get forty BCSO approaches. 
• We apply the forty BCSO approaches for solving two freely

available SCP sets. We study the results obtained through an

accepted statistical methodology to analyze if selecting a bina-

rization technique influences the behavior of the metaheuristic.

The rest of this paper is structured as follows. We list the

acronyms considered in Table 1 . In Section 2 , we discuss the re-

lated work, including the major motivations for performing this

work. In Section 3 , we give a formal SCP definition, including a

problem example. In Section 4 , we explain the BCSO metaheuristic.

In Section 5 , we describe the transfer and discretization functions

in this study. In Section 6 , we discuss the experimental method

followed and the results obtained. In Section 7 , we give some im-

plementation details. Finally, conclusions are left for Section 8 . 

2. Related work 

We find many works solving the SCP. Starting with exact al-

gorithms, ( Beasley & Jornsten, 1992; Fisher & Kedia, 1990 ), and

( Balas & Carrera, 1996 ) considered branch-and-bound and branch-

and-cut techniques. Bar-Yejuda and Even (1981) ; Beasley (1987) ,

and El-Darzi and Mitra (1990) considered linear programming.
aprara, Fischetti, and Toth (20 0 0) compared several exact algo-

ithms for optimizing the SCP, reaching that the best exact algo-

ithm is CPLEX. This type of exact techniques is not suitable for

olving NP-hard problems, because no polynomial time algorithm

xists. Instead, computation times raise exponentially. In this way,

xact algorithms can only solve SCP instances of a limited size and

re time-consuming. 

On the contrary, approximate algorithms as heuristics and

etaheuristics sacrifice getting optimal solutions for the sake of

btaining approximate ones in an appreciably reduced computa-

ional time. In this line, there are works comparing exact tech-

iques to metaheuristics, concluding that exact methods were able

o optimally solve small instances in a reduced time, even lower

han metaheuristics. However and for large instances, metaheuris-

ics outperformed exact techniques in many cases, keeping low

omputational times. In many other cases, exact techniques were

nable to be applied because of the computational effort needed

 Grohmann, Urosevic, Carrizosa, & Mladenovic, 2016; Niroomand &

izvari, 2015 ). 

We may cite some authors considering heuristics for solving

he SCP. Chvatal (1979) assumed a classical greedy algorithm and

 Vasko, Lu, & Zyma, 2016 ) analyzed the performance of construc-

ion heuristics expanding on column and row knowledge classi-

al functions. Some authors improved greedy algorithms by adding

ome randomness, e.g. , Feo and Resende (1989) ; Vasko (1984) , and

aouari and Chaouachi (2002) . Other authors considered heuris-

ics based on Lagrangian relaxation, such as Beasley (1990) ; Ceria,

obili, and Sassano (1998) , and Caprara, Fischetti, and Toth (1999) .

In the last decades, metaheuristics had a great impact, combin-

ng basic heuristic methods and effectiveness exploring the search

pace. Usually, metaheuristics are split into three categories: Evo-

utionary Algorithms (EAs), SIAs, and Trajectory Algorithms (TAs). 

Starting with EAs, we may cite the works of Beasley and Chu

1996) ; Chu and Beasley (1997) , and Aickelin (2004) . TAs were as-

umed by Lust and Tuyttens (2014) and Colombo, Cordone, and

ulli (2015) . 

In the last years and as discussed below, SIAs were successfully

onsidered in the literature for solving the SCP. As we know, most

f these algorithms are designed for solving continuous optimiza-

ion problems and the SCP is a discrete problem. Consequently,

uch techniques should be adapted for solving the problem. Next,

e review authors assuming SIAs, detailing the adaptation proce-

ure considered if necessary. 

Crawford and Castro (2006) ; Lessing, Dumitrescu, and Stutzle

2004) ; Ren, Feng, Ke, and Zhang (2010) , and Crawford, Soto, Mon-

roy, Paredes, and Palma (2011) considered the Ant Colony Op-

imization (ACO) algorithm proposed by Dorigo and Gambardella

1997) . This metaheuristic is one of the few SIAs, which solve both
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iscrete and continuous problems without modifying the original

roposal. 

Sundar and Singh (2012a) and Crawford, Soto, Cuesta, and Pare-

es (2014a) applied the Artificial Bee Colony (ABC) algorithm pro-

osed by Karaboga and Basturk (2007) . In both works, the authors

onsidered the approach proposed by Singh (2009) for generating

eighboring solutions instead of assuming the original continuous

ormulation of ABC. To this end, a part is randomly dropped from

he solution and in its place, another different part is randomly

elected from other solution in the population. In the case that a

ifferent part could not be found, the algorithm generates a new

olution through a low-cost local search. 

Crawford et al. (2014b) and Crawford et al. (2015d) assumed the

irefly Algorithm (FA) designed by Yang (2010) . In both works, they

hanged the original proposal by incorporating transfer and dis-

retization functions. Thus, Crawford et al. (2015d) assumed all the

ransfer and discretization functions in this paper; and Crawford

t al. (2014b) applied the eight transfer functions and the dis-

retization functions D 2 , D 3 , and D 4 . 

Naji-Azimi, Toth, and Galli (2010) and Soto, Crawford, Muñoz,

ohnson, and Paredes (2015) applied the ElectroMagnetism-like

EM-like) algorithm proposed by Birbil and Fang (2003) . Naji-Azimi

t al. (2010) considered a new binary formulation and Soto et al.

2015) assumed the transfer function S 1 and the discretization 

unction D 4 . 

Crawford et al. (2015c) considered the Shuffled Frog Leaping Al-

orithm (SFLA) designed by Eusuff, Lansey, and Pasha (2006) , as-

uming all the transfer and discretization functions in this paper. 

Crawford et al. (2015a) and Lu and Vasko (2015) assumed the

eaching-Learning-Based Optimization (TLBO) algorithm proposed 

y Rao, Savsani, and Vakharia (2011) . Crawford et al. (2015a) ap-

lied all the transfer and discretization functions in this paper.

u and Vasko (2015) combined a randomized greedy algorithm

or generating the initial population and a TLBO approach for

mproving the population solutions. To this end, Lu and Vasko

2015) adapted the TLBO metaheuristic to the binary scope through

 straightforward methodology. Zyma, Lu, and Vasko (2015) suc-

essfully considered the same binarization technique to solve

ultiple-choice multidimensional knapsack problems. 

Crawford et al. (2015e) applied the Fruit Fly Optimization Algo-

ithm (FFOA) designed by Pan (2012) . The authors assumed all the

ransfer and discretization functions in this paper. 

Analyzing this review from the point of view of the results ob-

ained, while solving the SCP, we check that both exact algorithms

nd simple heuristics typically do not give as good results as the

ore advanced metaheuristics, thereby the best historical results

ere found by SIAs, obtaining optimal or near optimal solutions for

he classical SCP benchmark. Thus, we have an idea of the benefits

f solving the SCP by an approximate approach. In this line, Lu and

asko (2015) achieved a really good approach because of the merit

f the simple binarization technique considered for adapting the

LBO algorithm, which is totally different from the 40 techniques

iscussed in this paper. This is obvious because when Crawford

t al. (2015a) applied the same SIA with the 40 transfer and dis-

retization functions in this paper, their results were much poorer

3.02% deviation from optimum based on best over 30 trials) than

he high-quality results of Lu and Vasko (2015) (0.06% deviation

rom optimum based on best over 20 trials) on the same 65 SCPs. 

The purpose of this work is not to outperform the results ob-

ained in earlier works nor providing a new metaheuristic. Instead,

ur main goal is to analyze the impact of binarization methods

hen adapting an SIA to the discrete scope. To this end, we se-

ect an SIA previously applied for solving the SCP, getting results

ot really close to the optimal ones, such as the BCSO algorithm in

rawford et al. (2015b) . If we select a really good approach as the

roposal in Lu and Vasko (2015) , the results obtained could not be
mproved, on the contrary, they could only get worse. However, if

e select a proposal, which could be improved, such as the BCSO

lgorithm, we could analyze if the results obtained get better or

orse according to a binarization technique or another. 

Next, we list the main expected benefits of performing this

ork: 

• We expect to check if selecting a binarization approach could

influence the behavior of a metaheuristic. 
• If we confirm the first statement, we expect to check if there

is any binarization approach which we could recommend for

solving the SCP, or instead, if we could give some general rec-

ommendations to adapt a metaheuristic. 
• If we confirm the first statement, we expect to check if the

original BCSO could be outperformed by considering a new bi-

narization approach, and in such a case, if we could recommend

the new algorithm for solving the SCP in future works. 

To the best of our knowledge, this is the first work perform-

ng this study. From the previous literature review, we know

hat Crawford et al. (2015a, 2015c, 2015d) , and Crawford et al.

2015e) assumed several binarization techniques for solving the

CP. However, they did not perform any study to analyze if the dif-

erences observed between the b methods were significant, which

s the main purpose of this work. 

. Set covering problem 

In this section, we provide a formal statement of the SCP and a

mall location problem as an example of this formulation. 

.1. Problem definition 

The SCP is formally defined by assuming a binary matrix A of

 -rows and n -columns, where a i, j ∈ {0, 1} denotes the value of the

ell ( i, j ) of A , with i ∈ 1 , 2 , . . . , m and j ∈ 1 , 2 , . . . , n . A is formally

efined as 

 = 

⎛ 

⎜ ⎝ 

a 1 , 1 a 1 , 2 . . . a 1 ,n 
a 2 , 1 a 2 , 2 . . . a 2 ,n 
. . . . . . . . . . . . 

a m, 1 a m, 2 . . . a m,n 

⎞ 

⎟ ⎠ 

. (1) 

e say that a column j covers a row i if a i, j equals 1 and 0

therwise. Each column j is associated with a non-negative real

ost c j ∈ C , where C = { c 1 , c 2 , . . . , c n } . Let I = { 1 , 2 , . . . , m } and

 = { 1 , 2 , . . . , n } be the row and column sets, respectively. The SCP

alls for a minimum cost subset S ⊆ J , such that each row i ∈ I is

overed by at least one column j ∈ S . Thus, the optimization prob-

em is expressed as 

in 

∑ 

j∈ J 
c j x j , (2) 

ubject to 

 

j∈ J 
a i, j x j ≥ 1 , ∀ i ∈ I, (3)

 j ∈ { 0 , 1 } , ∀ j ∈ J, (4)

here x j equals 1 if column j is in the solution S and 0 otherwise.

rom this formulation, we reach that the goal is to minimize the

um of the costs of the selected columns. Note that the constraint

n Eq. (3) ensures that each row i is covered by at least one col-

mn. 
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Fig. 1. Zones for the location problem example. 
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3.2. Problem example 

We propose a small location problem as an example of the

SCP formulated before. Suppose that we need to offer fire services

at the lowest possible cost in the city composed of six zones as

shown in Fig. 1 . In this case, we have the following constraints: 

• A fire station can only attend the zone in which it is located

and immediately adjacent zones, e.g. , a fire station in zone 1

can attend zones 1, 2, 3, and 5. 
• The fire services should attend all the zones. 
• The greatest number of fire stations per zone is 1. 

Let A be the binary matrix denoting which zones are covered

by a hypothetical fire station according to the zone in which it is

placed, that is 

A = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 1 1 0 1 0 

1 1 1 0 0 0 

1 1 1 1 1 1 

0 0 1 1 1 1 

1 0 1 1 1 1 

0 0 1 1 1 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, (5)

where a i, j is the value of the cell ( i, j ) of A , equaling 1 if the

fire station at the j th zone covers the i th zone, with i and j ∈
1 , 2 , . . . , 6 . Let x j be the indicator function equaling 1 if a fire sta-

tion is built in the j th zone and 0 otherwise. Let C be the set de-

noting the cost of building a fire station according to the zone, that

is 

 = ( 3 , 5 , 6 , 4 , 2 , 1 ) . 

According to this notation and the formulation in Eqs. (2) to (4) ,

the optimization problem is expressed as 

min 3 x 1 + 5 x 2 + 6 x 3 + 4 x 4 + 2 x 5 + 1 x 6 , 

subject to 

a 1 , 1 x 1 + a 1 , 2 x 2 + a 1 , 3 x 3 + a 1 , 4 x 4 + a 1 , 5 x 5 + a 1 , 6 x 6 ≥ 1 

a 2 , 1 x 1 + a 2 , 2 x 2 + a 2 , 3 x 3 + a 2 , 4 x 4 + a 2 , 5 x 5 + a 2 , 6 x 6 ≥ 1 

a 3 , 1 x 1 + a 3 , 2 x 2 + a 3 , 3 x 3 + a 3 , 4 x 4 + a 3 , 5 x 5 + a 3 , 6 x 6 ≥ 1 

a 4 , 1 x 1 + a 4 , 2 x 2 + a 4 , 3 x 3 + a 4 , 4 x 4 + a 4 , 5 x 5 + a 4 , 6 x 6 ≥ 1 

a 5 , 1 x 1 + a 5 , 2 x 2 + a 5 , 3 x 3 + a 5 , 4 x 4 + a 5 , 5 x 5 + a 5 , 6 x 6 ≥ 1 

a 6 , 1 x 1 + a 6 , 2 x 2 + a 6 , 3 x 3 + a 6 , 4 x 4 + a 6 , 5 x 5 + a 6 , 6 x 6 ≥ 1 

, (6)

x j ∈ { 0 , 1 } , ∀ j ∈ 1 , . . . , 6 . 

Eq. (6) is simplifiable by replacing the values of a i, j in Eq. (5) based

on the notation in Eq. (1) , that is 

1 x 1 + 1 x 2 + 1 x 3 + 0 x 4 + 1 x 5 + 0 x 6 ≥ 1 

1 x 1 + 1 x 2 + 1 x 3 + 0 x 4 + 0 x 5 + 0 x 6 ≥ 1 

1 x 1 + 1 x 2 + 1 x 3 + 1 x 4 + 1 x 5 + 1 x 6 ≥ 1 

0 x 1 + 0 x 2 + 1 x 3 + 1 x 4 + 1 x 5 + 1 x 6 ≥ 1 

1 x 1 + 0 x 2 + 1 x 3 + 1 x 4 + 1 x 5 + 1 x 6 ≥ 1 

0 x 1 + 0 x 2 + 1 x 3 + 1 x 4 + 1 x 5 + 1 x 6 ≥ 1 

. (7)
xcluding the null terms in Eq. (7) , the final expression is given

y 

x 1 + x 2 + x 3 + x 5 ≥ 1 

x 1 + x 2 + x 3 ≥ 1 

x 1 + x 2 + x 3 + x 4 + x 5 + x 6 ≥ 1 

x 3 + x 4 + x 5 + x 6 ≥ 1 

x 1 + x 3 + x 4 + x 5 + x 6 ≥ 1 

x 3 + x 4 + x 5 + x 6 ≥ 1 

. 

he optimal solution to this problem is to build a fire station in

ones 1 and 6, getting a total cost of 4. 

. Binary cat swarm optimization 

Domestic cats show great abilities for hunting and being alert

o possible dangers ( Adamec, 1976; Adler, 1995 ). Based on this

dea, Chu et al. (2006) proposed an SIA inspired by the behavior of

eal cats. This metaheuristic was later adapted to the discrete scope

y Sharafi et al. (2013) . The authors identified two main modes of

ehavior for simulating cats: 

• Seeking mode: it simulates the situation in which a cat is look-

ing around, calculating, and evaluating the next movement. 
• Tracing mode: it simulates the situation in which a cat is hunt-

ing through tracking targets. 

The metaheuristic considers a population Q g of k cats, in which

t generation g ≥ 1, a cat is a solution to the problem. Based on

he SCP definition in Section 3 , each cat η ∈ Q g is composed of

 binary vector of n elements, where ηj denotes the value of the

 th cell of η, with j ∈ 1 , 2 . . . , n . The meaning of ηj is the same as

escribed before for x j , that is 

j = 

{
1 if the jth column is in the solution of η
0 otherwise 

. (8)

As stated in Algorithm 1 , Q g is randomly generated in a first

lgorithm 1 Binary cat swarm optimization algorithm. 

1: Q g ← initializePopulation( k ) 
2: while not stop condition do 

3: S g , T g ← selectGroupCats( Q g , mr) 
4: S g+1 ← applySeekingMode( S g ) 
5: T g+1 ← applyTracingMode( T g ) 
6: Q g+1 ← selectBestSolutions( S g+1 , T g+1 , k ) 
7: end while 

tep (line 1). Then and so long as a stop condition is not reached

line 2), Q g is randomly divided into two parts S g and T g accord-

ng to the value of mr , which denotes the percentage of cats in

racing mode. Accordingly, the other cats are in seeking mode (line

). Next, the cats in S g act in seeking mode and the cats in T g act

n tracing mode, generating the two new groups S g+1 and T g+1 , re-

pectively (lines 4–5). Then, the two new groups are joined to gen-

rate a new Q g+1 by assuming the k -best solutions in the union

line 6). 

In the next subsections, we discuss the general behavior of both

odes and an improving operator for repairing and simplifying so-

utions. 

.1. Seeking mode 

Some parameters affect this mode: 

• cdc : counts of dimensions to change. It indicates the percentage

of columns selected for a possible mutation. 
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U = { i ∈ I : w = 0 } . 
• pmo : the probability of mutation operation. It is the chance that

a given column is mutated. 
• smp : the size of the seeking memory pool. It defines the size

of the pool considered for each cat, i.e. , the number of identical

copies generated from a given solution. 

Algorithm 2 shows the general scheme of this mode. Below, we

lgorithm 2 Seeking mode. 

1: for each η ∈ S g do 

2: P IC ← generatePool( η, smp) � step 1
3: P IC ← mutatePool( P IC, cdc, pmo) � step 2
4: P IC ← evaluateRepairSolutions( P IC) � step 3
5: η ← rouletteWheelSelection( P IC) � step 4
6: end for 

escribe the algorithm step by step: 

• Step 1 (line 2): a pool of smp identical copies to a given solu-

tion η is generated. This pool is denoted as PIC . 
• Step 2 (line 3): according to cdc , several columns of the so-

lutions in PIC are selected for a possible mutation. Next, such

columns are mutated according to pmo by changing zero by one

and vice versa. 
• Step 3 (line 4): the mutated solutions in the previous step are

evaluated. If a solution is infeasible, it is repaired through the

procedure described in Section 4.3 . 
• Step 4 (line 5): η is replaced by a solution selected from PIC

through a roulette wheel selection. Thus, each ζ ∈ PIC is as-

signed a selection probability sp ζ given by 

sp ζ = 

∣∣∣∣ f (ζ ) − f (worst PIC ) 

f (worst PIC ) − f (best PIC ) 

∣∣∣∣, 
where f ( ·) is the fitness value of a solution calculated as given

by Eq. (2) , best PIC and worst PIC are the best and the worst solu-

tion in PIC , respectively, and | · | provides the absolute value of

a number. 

.2. Tracing mode 

Some parameters affect this mode: 

• iw ∈ [0, 5]: inertia weight. 
• ac ∈ [0, 5]: acceleration constant. 
• vb ∈ [0, 1]: velocity bound. 

Algorithm 3 shows the general scheme of this mode. Below, we

lgorithm 3 Tracing mode. 

1: for each η ∈ T g do 

2: for j = 1 , 2 , . . . , n do 

3: v j η ← calculateVelocity( η, j, iw, ac) � step 1

4: v j η ← analyzeVelocityBound( v j η, v b) � step 2

5: pmut j η ← calculateMutationProbability( v j η) � step
3 

6: η j ← mutateColumn( pmut j η, η, j) � step 4
7: end for 
8: η ← evaluateRepairSolution( η) � step 5
9: end for 

escribe the algorithm step by step: 

• Step 1 (line 3): we calculate the velocity of the cat η ∈ T g as a

probability of change. This value is calculated for each column
of η. Thus, the velocity v j η of the j th column of η is given by 

v j η = 

⎧ ⎨ 

⎩ 

w 

j 
1 

if η j = 0 

w 

j 
0 

otherwise 

, (9) 

where w 

j 
1 

and w 

j 
0 

are the probabilities that ηj changes to one

and zero, respectively. The values of w 

j 
1 

and w 

j 
0 

are given by 

w 

j 
1 

= w 

j 
1 

′ 
iw + d j 

1 
, 

w 

j 
0 

= w 

j 
0 

′ 
iw + d j 

0 
, 

where w 

j 
1 

′ 
and w 

j 
0 

′ 
are the probabilities that ηj changes to one

and zero in the previous iteration of the algorithm, respectively.

The values of d 
j 
1 

and d 
j 
0 

are expressed as 

d j 
1 

= 

{
α ac if best j = 1 

−α ac otherwise 
, 

d j 
0 

= 

{
−α ac if best j = 1 

α ac otherwise 
, 

where α is a uniform random number in the interval [0, 1] and

best j is the value of the j -column of the best solution in Q g .

Note that w 

j 
1 

′ 
and w 

j 
0 

′ 
are initialized to zero at the beginning

of the algorithm. 
• Step 2 (line 4): we check if v j η is within the bound determined

by vb . If the velocity is greater than this limit, it is replaced by

the value of vb . 
• Step 3 (line 5): we dynamically calculate the mutation proba-

bility pmut 
j 
η of each column of η based on the velocity obtained

in the previous step. To this end, we consider the transfer func-

tions introduced in the next section. 
• Step 4 (line 6): we mutate the column ηj based on the muta-

tion probability obtained in the previous step. To this end, we

consider the discretization methods introduced in the next sec-

tion. 
• Step 5 (line 8): the new solution η is evaluated and improved

based on the procedure described in Section 4.3 . 

.3. Improving operator 

Based on the SCP definition discussed in Section 3 , it is possi-

le that a solution does not satisfy the constraints, resulting in an

nfeasible solution. In this section, we describe an improving op-

rator for transforming infeasible solutions into feasible ones and

emoving redundant columns to reduce the solution cost ( Beasley

 Chu, 1996 ). Note that a column is redundant if after removing it,

he solution remains feasible. 

Algorithm 4 shows the general scheme of this operator. Below,

e describe the algorithm step by step, considering a notation in-

pired by the formulation in Section 3 . In steps 2 and 3, we de-

cribe the repairing function. In steps 4 and 5, we describe the re-

oving redundancy function. 

• Step 1 (line 1): we identify the set of non-covered rows U ⊆ I

in the current solution S ⊆ J . To this end, we first calculate the

number of columns w i in S covering a given row i ∈ I , which is

given by 

w i = || S ∩ J i || , 
where || · || is the cardinal of a set and J i ⊆ J is the column set

covering the row i . Then, U is calculated as 
i 
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Algorithm 4 Improving operator. 

1: w i , U ← initializeVariables( S) � Step 1 

2: for each i ∈ U do � Repairing function 

3: j ← selectColumnCoveringRow( i ) � Step 2 

4: S, w i , U ← updateVariables(j) � Step 3 

5: end for 
6: for each j ∈ S do � Removing redundancy function 

7: if w i > 1 , ∀ i ∈ I j then � Step 4 

8: S, w i ← removeColumn(j) � Step 5 

9: end if 
10: end for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Formulation of the transfer functions. 

s-shape v-shape 

S 1 : pmut j η = 

1 

1 + e −2 v j η
. V 1 : pmut j η = 

∣∣∣∣erf 

( √ 

π

2 
v j η

)∣∣∣∣. 
S 2 : pmut j η = 

1 

1 + e −v j η
. V 2 : pmut j η = 

∣∣tanh (v j η ) 
∣∣. 

S 3 : pmut j η = 

1 

1 + e 

−v j η
2 

. V 3 : pmut j η = 

∣∣∣∣∣∣
v j η√ 

1 + (v j η ) 2 

∣∣∣∣∣∣. 
S 4 : pmut j η = 

1 

1 + e 

−v j η
3 

. V 4 : pmut j η = 

∣∣∣ 2 

π
arctan 

(
π

2 
v j η

)∣∣∣ . 
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• Step 2 (line 3): we select a column j ∈ J i covering a given row

i ∈ U , which minimizes the function given by 

c j 

|| U ∩ I j || , 
where I j ⊆ I is the row set covered by the column j . 

• Step 3 (line 4): once the column j is selected, we include this

column in the solution S , that is 

S ← S ∪ { j} . 

As such column covers the row i ∈ U , we update the number of

columns in S covering the row i , that is 

w i ← w i + 1 . 

Next, U is updated by removing the row set covered by the col-

umn j , that is 

U ← U − I j . 

• Step 4 (line 7): we study if a given column j is redundant. To

this end, we check if the number of columns in S covering the

row i is greater than one, ∀ i ∈ I j . If the condition holds, then we

remove the column j by going to step 5. Otherwise, the column

is not removable. 
• Step 5 (line 8): the column j is removed from the solution by

following the expression given by 

S ← S − j . 

Next, we update the number of columns covering the rows in

I j , that is 

w i ← w i − 1 , ∀ i ∈ I j . 

5. Transfer and discretization functions 

In this section, we discuss the transfer and discretization func-

tions considered for addressing the steps 3 and 4 of the tracing

mode described in Section 4.2 . 

5.1. Transfer functions 

Transfer functions give the probability pmut 
j 
η of mutating the

j th column of the solution η ∈ T g according to the current velocity

v j η of ηj as given by Eq. (9) , with j ∈ 1 , 2 , . . . , n . 

We consider the eight transfer functions formulated in Table 2

and illustrated graphically in Fig. 2 , Kennedy and Eberhart

(1997) and Mirjalili, Mohd, Taherzadeh, Mirjalili, and Salehi

(2011) proposed S 2 and V 2 , respectively; and Mirjalili and Hashim

(2012) proposed the others. The functions are divided into two

groups, called s-shape ( S 1 , S 2 , S 3 , and S 4 ) and v-shape ( V 1 , V 2 , V 3 ,

and V 4 ), based on the function shapes. Thus, s-shape functions are

s-shaped and v-shape functions are v-shaped as shown in Fig. 2 (a)

and (b), respectively. Moreover, s-shape functions are odd and v-

shape functions are even. Mirjalili and Hashim (2012) compared
oth groups, concluding that v-shape functions outperformed s-

hape ones for a standard general framework. However, they did

ot perform any formal study of the differences observed. 

Analyzing Fig. 2 , we note that all the functions in a group are

imilar but having a different degree of smoothness. Thus, func-

ions with less smoothness have a smaller range of input values

 

j 
η providing non-extreme values of the output interval [0,1] than

moother functions. 

For example, S 1 is less smooth than S 2 . Based on S 1 formulation,

f we consider v j η equaling 2.3 and −2 . 3 , we get a pmut 
j 
η value

f 0.99 and 0.01, respectively. On the other hand and based on S 2 
ormulation, the same pmut 

j 
η values are obtained by assuming v j η

qualing 4.6 and −4 . 6 , respectively. Thus, the range of input values

f S 2 providing non-extreme values is greater than the range of S 1 .

The motivation of including both groups of transfer functions is

s follows. A high velocity implies that the cat is away from the

ptimal solution and a low velocity implies that the cat is close to

he optimal solution. Based on this velocity, the strategy of both

roups of transfer functions is different. S-shape functions cause

hat cats with a low velocity have associated a low mutation prob-

bility, while cats with a high velocity have associated a high mu-

ation probability (see Fig. 2 a). On the contrary, v-shape functions

ause that the mutation probability is high for cats with low and

igh velocities (see Fig. 2 b). Thus, we could define the following

ndicative order from more conservative to more aggressive explo-

ation strategy: S 4 , S 3 , S 2 , S 1 , V 4 , V 3 , V 2 , and V 1 . 

.2. Discretization functions 

Discretization functions generate a new binary value according

o the mutation probability given by transfer functions. We con-

ider the five discretization functions reviewed by Crawford et al.

2015c) . Such functions are in Table 3 , where · is the logical com-

lement of a proposition, pmut 
j 
η is the output of the transfer func-

ion, α is a uniform random number in the interval [0, 1], ηj is

iven by Eq. (8) , ηj 
′ is the expected output of the discretization

unction, f ( ·) is the fitness value of a solution calculated as given

y Eq. (2) , and best j is the value of the j th column of the best so-

ution in Q g . 

Next, we briefly describe each function: 

• Elitist roulette ( D 1 ): it considers a probability-based selection

process, where P 
[
η j 

′ = δ j 

]
denotes the probability that ηj 

′ as-

sumes the value of the j th column of δ ∈ Q g . Thus, if the condi-

tion holds, a value is randomly selected based on the rule: the

better the solution, it is more likely to be selected. Otherwise,

a value of 0 is returned. 
• Complement ( D 2 ): if the condition holds, it returns the comple-

ment of the input value ηj . Otherwise, it returns ηj . 
• Static probability ( D 3 ): if the first condition holds, it returns a

value of 0. If the second condition holds, it returns the value of
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Fig. 2. S-shape and v-shape transfer functions. 

Table 3 

Formulation of the discretization functions. 

D 1 : (elitist roulette) ⎧ ⎪ ⎨ 

⎪ ⎩ 

P 
[
η j 

′ = ζ j 

]
= 

f (ζ ) ∑ 

δ∈ Q g f (δ) 
if α ≤ pmut j η, 

P 

[ 
η j ′ = 0 

] 
= 1 otherwise . 

D 2 : (complement) 

η j 
′ = 

{
η j if α ≤ pmut j η, 

η j otherwise . 

D 3 : (static probability) 

η j 
′ = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if pmut j η ≤ α, 

best j if α ≤ pmut j η ≤ 1 

2 
(1 + α) , 

1 otherwise . 

D 4 : (set the best) 

η j 
′ = 

{
best j if α ≤ pmut j η, 

η j otherwise . 

D 5 : (standard) 

η j 
′ = 

{
1 if α ≤ pmut j η, 

0 otherwise . 
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the j th column of the best solution in Q g . Otherwise, it returns

a value of 1. 
• Set the best ( D 4 ): if the condition holds, it returns the value of

the j th column of the best solution in Q g . Otherwise, it returns

the input value ηj . 
• Standard ( D 5 ): if the condition holds, it returns a value of 1.

Otherwise, it returns a value of 0. 

The motivation of including these five functions is because they

ll offer different capabilities to the search strategy. As a way of

dentifying such capabilities, we could define the following indica-

ive order from more exploratory to more exploitative strategies:

 2 , D 5 , D 1 , D 3 , and D 4 . Crawford et al. (2015c) checked that the

ehavior of such discretization functions was different. However,

hey did not perform any formal study of the differences observed.

. Experimentation 

In this section, we discuss both the experimental method fol-

owed and the experimental results obtained. 

.1. Experimental methodology 

We apply the BCSO algorithm for solving two different problem

ets: 
• The standard OR-library benchmark described in Table 4 in-

cludes 65 randomly generated non-unicost instances, which are

available in Beasley (2016) . This dataset is widely considered in

the literature to test complex algorithms as the SIA assumed

in this work, e.g. , Ren et al. (2010) , Lu and Vasko (2015) ; Naji-

Azimi et al. (2010) ; Sundar and Singh (2012b) , and Vasko et al.

(2016) . 
• Table 5 shows various combinatorial optimization problems

modeled as unicost SCPs. In general, unicost problems are

more challenging compared to their non-unicost approaches.

The dataset is available in Beasley (2016) . 

In Tables 4 and 5 , Density field means the percentage of ones in

he A matrix given by Eq. (1) and Optimal solution field shows two

ossible values, known and unknown, according if the instances

ave associated a solution checked to be optimal, or instead it

ould not be tested due to the instance complexity. Thus, instance

ets 4, 5, 6, A, B, C, D, NRE, and NRF have associated a solution

hecked to be optimal. On the contrary, we only know the best

istorical solution for sets NRG, NRH, and all the unicost instances.

The authors of BCSO adapted the SIA to the discrete scope as-

uming the transfer function S 2 and the discretization function D 3 .

ow, we solve the two problem sets by considering the forty bi-

arization techniques introduced before to study if there are sig-

ificant differences between the binarization approaches. To this

nd, we perform 30 independent runs for each instance and bi-

arization technique, being 30 a widely accepted value for getting

tatistical conclusions ( Hays & Winkler, 1970 ). Next, we analyze the

istributions of 30 samples for each instance and binarization tech-

ique through the methodology shown in Fig. 3 ( Hays & Winkler,

970 ). 
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Table 4 

Standard OR-library benchmark description. 

Instance set Number of m n Cost range Density (%) Optimal 

instances solution 

4 10 200 10 0 0 [1,100] 2 .00 known 

5 10 200 20 0 0 [1,100] 2 .00 known 

6 5 200 10 0 0 [1,100] 5 .00 known 

A 5 300 30 0 0 [1,100] 2 .00 known 

B 5 300 30 0 0 [1,100] 5 .00 known 

C 5 400 40 0 0 [1,100] 2 .00 known 

D 5 400 40 0 0 [1,100] 5 .00 known 

NRE 5 500 50 0 0 [1,100] 10 .00 known 

NRF 5 500 50 0 0 [1,100] 20 .00 known 

NRG 5 10 0 0 10,0 0 0 [1,100] 2 .00 unknown 

NRH 5 10 0 0 10,0 0 0 [1,100] 5 .00 unknown 

Table 5 

Unicost benchmark description. 

Instance name m n Density (%) Optimal 

solution 

CYC.6 240 192 2 .10 unknown 

CYC.7 672 448 0 .90 unknown 

CYC.8 1792 1024 0 .40 unknown 

CLR.10-4 511 210 12 .30 unknown 

CLR.11-4 1023 330 12 .40 unknown 

CLR.12-4 2047 495 12 .50 unknown 

CLR.13-4 4095 715 12 .50 unknown 
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The type of stop condition is the same for all the instances, be-

ing based on the number of evaluations. This type of criterion is

fairer than others, such as elapsed time, which depends on the ma-

chine performance. We consider two different values for the stop

condition according to the problem size: 40 0 0 0 evaluations for the

sets 4, 5, 6, A, B, C, D and 50 0 0 evaluations for the sets NRE, NRF,

NRG, NRH, and all the unicost instances. We assume two different

values because the computation effort required for both groups is

notably different. As proof of this and assuming the machine de-

scribed in Section 7 , the average execution time of one run for the

first group is 29.46 seconds, while the average execution time of

one run for the second group is 221.23 seconds. We could consider

the same value of 40,0 0 0 evaluations for both groups. However,

the computational time for the second group would be excessively

high. On the contrary, if we consider the same value of 50 0 0 eval-

uations for both groups, we would get a reduced computational

time for the first group. However, the reliability of the results ob-

tained could be also reduced, while considering 40,0 0 0 evaluations

involves a low computational effort. 

As any other metaheuristic, we should configure the BCSO algo-

rithm before running the experiments. To this end and for each pa-

rameter of the algorithm, we define a range of values to study and

a default configuration. Then, we perform 30 independent runs for

each configuration of a parameter, instance, and binarization tech-

nique, resulting in 1200 runs for each value of a parameter and

instance. Then, we select the configuration, providing the best per-

formance on average. Next, we select another parameter until all of

them are set. Table 6 shows for each parameter the range of values

and the configurations selected. Note that iw, ac , and vb parame-

ters were experimentally set to 1.00, 1.00, and 0.80 to decrease the

parametric swap complexity, i.e. , the number of parameters to con-

figure. 

Table 6 includes the configurations obtained for each bench-

mark. Note that with the purpose of optimizing the algorithm be-

havior solving the SCP, we give a specific configuration based on

the problem size, instead of getting a general configuration for the

two problems sets. As expected, this parametric swap needs a large

amount of computation effort. Thus, for the OR-library, we group
he instances by a similar number of rows x columns as follows:

he first group includes instance sets 4, 5, and 6 with size 200

10 0 0 and 20 0 × 20 0 0. The second group includes instance sets

 and B with size 300 × 3000. The third group includes instance

ets C and D with size 400 × 4000. The fourth group includes in-

tance sets NRE and NRF with size 50 0 × 50 0 0. The fifth group

ncludes instance sets NRG and NRH with size 10 0 0 × 10 0 0 0. As

 result, we get five configurations for solving the OR-library (65

nstances). On the contrary, for the unicost benchmark, we give

 configuration for each instance because the number of rows x

olumns is significantly different and then we opted not to group

he instances. 

.2. Experimental results 

As a quality metric, we consider the average Relative Percentage

eviation (RPD), quantifying how close is a solution to the optimal

ne. The average RPD metric rpd 
i 

d,t for a discretization function d ∈
 1 , D 2 , . . . , D 5 , a transfer function t ∈ S 1 , S 2 , . . . , S 4 , V 1 , V 2 , . . . , V 4 ,

nd an instance i ∈ {OR-library, unicost-library} is calculated as 

pd 
i 

d,t = 

( 

z 
i 
d,t − z i opt 

z i opt 

) 

100 , 

here z i opt is the optimal solution or the best historical solution,

epending on the case, for the instance i and z i d,t is the aver-

ge fitness value obtained for 30 runs while solving the instance

 through d and t functions. 

Tables 7 and 8 show the average RPD for each instance

nd binarization technique, where lower (better) RPD values are

haded. Note that Table 7 includes s-shape transfer functions and

able 8 includes v-shape ones. In these tables, some binarization

echniques seem to offer better performance than others for a

iven instance. However, we do not know if the differences ob-

erved are significant. 

To this end, we first study if the data follow a normal distribu-

ion through Kolmogorov–Smirnov–Lilliefor’s ( Lilliefors, 1967 ) and

hapiro–Wilk’s ( Shapiro & Wilk (1965) ) tests, assuming the hy-

othesis H 0 : data follow a normal distribution and H 1 : otherwise.

e obtained p-values lower than 0.05 for all the cases. Hence, we

annot assume that the data follow a normal distribution. Thus,

e should consider the median as the average value. Note that

ables 7 and 8 were generated after performing this study and

hen the median was assumed. 

Next, we study if there are significant differences among the

inarization techniques. As samples are independent and data

o not follow a normal distribution, we assume the Wilcoxon–

ann–Whitney’s Mann and Whitney (1947) test with the hy-

othesis H 0 : rpd 
i 

a,b ≥ rpd 
i 

c,d , ∀ a, c ∈ D 1 , D 2 , . . . , D 5 and ∀ b, d ∈
 , S , . . . , S , V , V , . . . , V . 
1 2 4 1 2 4 
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Table 6 

Parametric swap. 

Parameter Range OR-library benchmark Unicost benchmark 

Instance set Selected Instance name Selected Instance name Selected 

4, 5, and 6 100 CYC.6 50 CLR.10-4 75 

A and B 50 CYC.7 50 CLR.10-5 50 

k [10,15,... ,200] C and D 30 CYC.8 25 CLR.10-6 75 

NRE and NRF 25 CLR.10-7 25 

NRG and NRH 20 

4, 5, and 6 0 .70 CYC.6 0 .75 CLR.10-4 0 .75 

A and B 0 .65 CYC.7 0 .75 CLR.10-5 0 .75 

mr [0 .10,0.15,..,0.90] C and D 0 .50 CYC.8 0 .25 CLR.10-6 0 .25 

NRE and NRF 0 .50 CLR.10-7 0 .75 

NRG and NRH 0 .50 

4, 5, and 6 5 CYC.6 10 CLR.10-4 25 

A and B 5 CYC.7 10 CLR.10-5 10 

smp [5,10,... ,50] C and D 10 CYC.8 10 CLR.10-6 25 

NRE and NRF 15 CLR.10-7 10 

NRG and NRH 20 

4, 5, and 6 0 .97 CYC.6 0 .80 CLR.10-4 0 .80 

A and B 0 .93 CYC.7 0 .80 CLR.10-5 0 .80 

pmo [0 .01,0.02,... ,1.00] C and D 0 .90 CYC.8 0 .80 CLR.10-6 0 .90 

NRE and NRF 1 .00 CLR.10-7 0 .90 

NRG and NRH 1 .00 

4, 5, and 6 0 .10 CYC.6 2 .00 CLR.10-4 2 .00 

A and B 0 .10 CYC.7 0 .60 CLR.10-5 1 .00 

cdc (%) [0 .10,0.20,..,90.00] C and D 0 .20 CYC.8 0 .10 CLR.10-6 2 .00 

NRE and NRF 0 .20 CLR.10-7 0 .60 

NRG and NRH 1 .00 
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We analyze the p-values obtained by considering a significance

evel of 0.05. Based on this analysis and for each instance set,

able 9 shows the percentage of cases in which a binarization

echnique offers the best significant performance compared to all

thers. In this table, better values are shaded from a darker to a

ighter tone, i.e. , from better to worse behavior. 

Analyzing this table, we reach that for the instance set 4 the

est combination is ( D 1 , V 3 ). For the set 5 are ( D 3 , S 4 ), ( D 3 , V 3 ),

nd ( D 2 , V 4 ). For the set 6 is ( D 3 , V 4 ). For the set A is ( D 2 , V 3 ). For

he set B is ( D 3 , S 2 ). For the set C is ( D 4 , V 4 ). For the set D is ( D 1 ,

 2 ). For the set NRE is ( D 4 , V 4 ). For the set NRF is also ( D 4 , V 4 ). For

he set NRG is ( D 1 , S 3 ). For the set NRH is also ( D 1 , S 3 ). For the set

YC is ( D 1 , V 1 ) and for the set CLR is ( D 3 , S 4 ). 

From this first study, we do not reach any specific trend for

electing a concrete binarization approach. To this end, Tables 10

nd 11 show the Relative Variation Percentage (RVP) for each fam-

ly of instance sets and binarization approach, where we group

he instances by a similar complexity level forming families. Thus,

e define the following family order from lower to higher com-

lexity: F 1 = { 4 , 5 , 6 } , F 2 = { A, B } , F 3 = { C, D } , F 4 = { NRE, NRF } , F 5 =
 C Y C, C LR } , and F 6 = { N RG, N RH} . 

The RVP metric rv p f 
d,t 

for a discretization function d , a trans-

er function t , and a family of instance sets f ∈ F 1 , F 2 , . . . , F 6 is ex-

ressed as 

v p f 
d,t 

= 

| apc f 
best 

− apc f 
d,t 

| 
apc i 

best 

, 

here apc 
f 

d,t 
is the average percentage of cases, compared to all

thers, in which the combination of d and t functions offers the

est significant performance solving the family f , and apc 
f 

best 
is the

verage percentage of cases, compared to all others, in which the

est binarization approach solves the family f . Formally, apc 
f 

d,t 
is

iven by 

pc f 
d,t 

= 

∑ 

j∈ F f 
pc j 

d,t 

|| F f || , 
here pc 
j 

d,t 
is the percentage of cases, compared to all others, in

hich the combination of d and t functions offers the best signif-

cant performance solving the instance set j . Note that pc 
j 

d,t 
val-

es are provided in Table 9 as a result of the statistical study per-

ormed before. Consequently, apc 
f 

best 
is given by 

pc f 
best 

= arg max 
d∈ D 1 ,D 2 , ... ,D 5 

t∈ S 1 ,S 2 , ... ,S 4 ,V 1 ,V 2 , ... ,V 4 

{ apc f 
d,t 

} , 

here argmax { ·} provides the point/points where a function gets

ts maximum value/values. 

Tables 10 and 11 have the same RVP values, but showing the

nformation differently to analyze the behavior of transfer and dis-

retization functions in a better way. Thus, Table 10 presents the

nformation grouped by transfer functions and Table 11 presents

he information grouped by discretization functions. Note that the

ower the RVP value, the binarization approach is better. In this

ine, better RVP values are shaded from a darker to a lighter tone

n both tables. 

Table 10 is sorted based on the indicative order defined for

ransfer functions in Section 5.1 , i.e. , from more conservative to

ore aggressive exploration strategy. Analyzing this table, we find

he following trend: v-shape transfer functions outperforms s-

hape ones for solving small and medium problems ( I 1 , I 2 , I 3 , and

 4 families), while s-shape functions are better for solving large

roblems ( I 5 and I 6 families). This fact agrees with the behav-

or of the transfer functions described before in Section 5.1 . V-

hape functions follow an aggressive exploration strategy, assign-

ng high mutation probabilities for both near and far optimal so-

utions. On the contrary, s-shape functions follow a conservative

xploration strategy, assigning high mutation probabilities only for

ar optimal solutions. Thus, v-shape functions are fit for solving

imited search space problems and s-shape functions are fit for

olving large search space problems. The same behavior is shown

n Table 12 , where RVP values are presented for each family re-

ardless of the discretization function considered. To this end, the
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Table 7 

Average RPD for each instance and binarization technique: s-shape transfer functions. 

Instance Discretization and s-shape transfer functions 

D 1 D 2 D 3 D 4 D 5 D 1 D 2 D 3 D 4 D 5 D 1 D 2 D 3 D 4 D 5 D 1 D 2 D 3 D 4 D 5 

S 1 S 2 S 3 S 4 

4 .1 3 .58 2 .80 2 .84 3 .80 3 .24 2 .58 6 .11 6 .44 2 .74 3 .16 2 .83 6 .34 6 .85 3 .01 3 .11 3 .08 5 .93 3 .92 3 .70 3 .13 

4 .2 5 .11 4 .11 4 .77 3 .89 4 .71 4 .40 8 .44 6 .22 4 .62 3 .81 4 .40 8 .83 6 .00 5 .16 5 .05 4 .72 8 .14 5 .03 3 .71 4 .05 

4 .3 7 .95 7 .31 7 .18 7 .54 8 .09 7 .98 11 .92 7 .93 7 .71 7 .96 7 .90 11 .52 7 .95 7 .41 8 .28 7 .49 10 .72 7 .86 8 .51 7 .89 

4 .4 4 .15 4 .45 5 .26 5 .16 3 .62 3 .29 5 .92 3 .90 4 .28 3 .85 4 .44 7 .32 3 .73 3 .61 4 .22 4 .68 6 .71 3 .77 3 .91 3 .54 

4 .5 2 .77 2 .78 2 .44 2 .46 2 .55 2 .51 4 .28 2 .75 2 .55 2 .19 2 .81 4 .36 2 .53 2 .60 2 .40 2 .29 4 .19 2 .57 2 .42 2 .34 

4 .6 1 .73 2 .33 1 .24 1 .55 1 .61 1 .74 4 .37 1 .24 1 .32 1 .42 1 .50 3 .92 1 .66 1 .42 1 .68 1 .57 4 .92 1 .43 1 .30 1 .13 

4 .7 2 .09 2 .05 2 .36 2 .29 2 .19 2 .57 3 .97 2 .18 2 .24 2 .26 2 .09 4 .00 2 .13 2 .15 2 .52 2 .33 4 .29 2 .07 2 .22 1 .98 

4 .8 5 .65 4 .07 5 .09 4 .95 4 .63 4 .75 10 .00 4 .98 5 .22 4 .30 4 .78 8 .64 3 .92 4 .97 5 .09 4 .80 9 .48 5 .63 5 .73 5 .37 

4 .9 5 .82 5 .82 5 .54 5 .40 5 .83 5 .90 8 .32 6 .04 5 .60 5 .92 5 .28 8 .13 5 .96 5 .68 5 .46 5 .63 6 .97 5 .37 5 .43 5 .55 

4 .10 2 .52 2 .72 2 .79 2 .15 2 .61 2 .85 4 .99 2 .63 2 .57 3 .17 2 .51 4 .51 2 .27 2 .24 2 .83 3 .05 5 .40 2 .72 2 .53 2 .47 

5 .1 3 .62 4 .41 3 .97 3 .79 4 .16 4 .44 6 .09 3 .77 3 .60 3 .78 4 .22 6 .23 4 .02 3 .54 4 .49 4 .08 5 .72 3 .53 3 .65 3 .75 

5 .2 4 .48 4 .25 4 .62 4 .58 4 .12 4 .45 6 .92 5 .11 4 .23 4 .02 4 .18 6 .56 4 .07 4 .30 3 .77 4 .42 6 .58 4 .03 4 .24 4 .67 

5 .3 3 .72 4 .31 3 .88 3 .83 3 .39 3 .94 6 .28 3 .58 2 .98 3 .01 3 .42 6 .14 3 .33 3 .08 3 .39 3 .67 6 .08 3 .61 3 .94 3 .86 

5 .4 1 .58 1 .60 1 .46 1 .50 1 .47 1 .45 1 .96 1 .49 1 .54 1 .46 1 .47 1 .97 1 .46 1 .49 1 .56 1 .52 1 .87 1 .38 1 .51 1 .53 

5 .5 4 .49 4 .09 4 .00 4 .19 4 .33 4 .25 5 .61 4 .31 4 .27 4 .44 4 .04 5 .37 4 .27 4 .23 4 .28 4 .66 5 .61 4 .28 4 .31 4 .27 

5 .6 6 .24 5 .99 5 .70 6 .65 5 .99 5 .46 10 .53 6 .12 6 .12 5 .20 6 .29 9 .61 6 .32 6 .04 6 .08 5 .54 9 .56 6 .40 5 .07 5 .18 

5 .7 4 .43 4 .82 4 .45 4 .23 4 .37 4 .55 9 .31 4 .60 4 .45 4 .46 3 .61 9 .62 3 .79 4 .53 4 .23 4 .82 9 .40 4 .78 3 .98 5 .01 

5 .8 6 .72 6 .30 6 .69 6 .62 6 .82 7 .06 10 .31 6 .42 6 .82 6 .85 7 .03 11 .04 6 .63 6 .55 6 .69 6 .22 10 .57 6 .40 7 .30 6 .82 

5 .9 0 .61 1 .18 1 .46 0 .56 0 .62 0 .58 1 .58 1 .49 0 .62 0 .51 0 .72 1 .95 0 .72 1 .18 1 .18 0 .58 1 .82 0 .61 0 .62 1 .15 

5 .10 4 .05 4 .11 3 .92 4 .00 4 .36 3 .90 5 .60 3 .92 4 .23 4 .30 4 .05 5 .58 4 .29 4 .14 3 .95 3 .87 5 .26 3 .70 4 .23 4 .09 

6 .1 7 .10 7 .08 7 .00 7 .15 7 .00 6 .67 12 .44 6 .57 6 .84 7 .29 6 .45 11 .74 7 .78 7 .51 6 .62 7 .08 12 .63 7 .46 7 .32 6 .57 

6 .2 3 .07 2 .95 2 .94 2 .93 2 .97 2 .74 5 .21 2 .74 2 .74 2 .74 2 .74 5 .27 2 .74 2 .99 3 .02 2 .74 5 .32 2 .74 2 .74 2 .95 

6 .3 4 .94 5 .31 5 .21 5 .10 5 .06 5 .22 6 .28 5 .15 5 .10 4 .90 5 .26 6 .90 5 .13 5 .54 5 .13 4 .74 6 .25 5 .82 4 .87 5 .86 

6 .4 2 .65 2 .93 2 .80 3 .00 2 .93 2 .90 3 .64 2 .65 3 .03 2 .93 2 .88 3 .92 2 .95 2 .98 3 .23 3 .08 3 .94 3 .00 2 .93 3 .18 

6 .5 4 .84 5 .24 5 .01 4 .64 5 .07 5 .09 6 .21 4 .87 5 .16 5 .65 5 .13 6 .31 5 .57 5 .18 4 .93 4 .80 6 .25 5 .20 4 .89 4 .70 

A.1 8 .87 8 .85 8 .85 9 .00 9 .14 9 .16 10 .84 9 .16 9 .18 9 .45 8 .74 10 .67 8 .75 9 .33 9 .16 9 .05 10 .75 9 .10 8 .88 9 .28 

A.2 5 .03 5 .16 5 .20 5 .20 5 .09 5 .38 6 .20 5 .16 5 .17 5 .21 4 .87 6 .19 5 .34 5 .20 5 .05 5 .05 6 .18 5 .13 5 .12 5 .24 

A.3 5 .13 5 .47 4 .86 4 .68 5 .47 5 .17 8 .72 5 .19 5 .01 5 .01 5 .46 7 .82 4 .86 4 .84 5 .26 5 .53 7 .57 4 .70 4 .77 5 .29 

A.4 4 .91 4 .83 5 .26 4 .96 5 .37 4 .99 5 .90 5 .07 4 .66 4 .91 5 .16 6 .04 5 .24 5 .24 5 .09 4 .93 6 .41 5 .41 4 .91 5 .07 

A.5 1 .27 1 .26 1 .12 1 .13 1 .17 1 .26 1 .57 1 .27 1 .27 1 .12 1 .21 1 .36 1 .30 1 .27 1 .23 1 .36 1 .41 1 .16 1 .19 1 .26 

B.1 8 .41 8 .84 7 .58 8 .21 6 .81 7 .78 10 .34 8 .79 7 .83 8 .70 8 .45 11 .64 7 .83 7 .90 8 .45 7 .63 11 .26 8 .36 8 .02 8 .16 

B.2 11 .49 11 .49 12 .02 11 .71 11 .93 12 .46 14 .74 10 .26 12 .11 11 .58 11 .67 15 .04 12 .37 11 .71 11 .40 11 .40 14 .21 12 .50 11 .45 11 .45 

B.3 3 .54 3 .29 3 .46 4 .00 3 .79 3 .75 5 .29 3 .50 3 .54 3 .83 3 .25 6 .46 3 .54 3 .42 2 .83 4 .04 6 .00 3 .87 3 .67 2 .92 

B.4 6 .33 6 .33 6 .33 6 .33 6 .33 6 .33 7 .17 6 .33 6 .29 6 .33 6 .33 7 .26 6 .33 6 .33 6 .33 6 .33 7 .05 6 .33 6 .33 6 .54 

B.5 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 

C.1 3 .38 3 .25 3 .32 3 .33 3 .30 3 .38 4 .41 3 .39 3 .26 3 .36 3 .32 4 .82 3 .33 3 .36 3 .42 3 .27 4 .76 3 .32 3 .45 3 .38 

C.2 5 .13 5 .10 5 .05 5 .04 5 .33 5 .18 6 .93 5 .43 5 .31 4 .84 5 .08 6 .83 5 .07 5 .16 5 .25 4 .63 7 .05 5 .08 5 .07 4 .87 

C.3 9 .16 8 .67 9 .20 8 .90 9 .11 9 .27 12 .47 9 .42 9 .40 9 .81 9 .01 12 .17 9 .47 9 .00 8 .94 8 .79 12 .72 9 .57 9 .49 9 .55 

C.4 8 .87 8 .81 8 .54 9 .01 9 .19 9 .24 11 .17 8 .86 9 .39 8 .86 11 .71 11 .05 9 .33 9 .27 8 .71 9 .21 11 .29 9 .06 9 .68 8 .93 

C.5 6 .96 7 .18 7 .18 7 .12 7 .12 6 .79 9 .22 6 .47 6 .88 7 .97 9 .57 9 .49 7 .49 7 .16 6 .88 7 .09 8 .56 6 .81 7 .07 7 .32 

D.1 8 .33 8 .64 7 .94 7 .67 8 .64 9 .01 7 .72 7 .33 8 .97 7 .67 9 .14 7 .78 8 .33 8 .77 8 .33 7 .56 7 .67 8 .33 6 .72 8 .83 

D.2 6 .06 6 .06 6 .06 6 .06 6 .06 5 .71 6 .06 6 .06 6 .06 6 .06 6 .06 5 .71 6 .06 5 .71 6 .06 6 .06 6 .06 6 .06 6 .06 5 .61 

D.3 9 .26 9 .03 9 .31 9 .21 9 .07 9 .12 9 .31 9 .44 9 .12 9 .72 10 .09 9 .72 9 .72 9 .72 9 .72 9 .40 9 .21 9 .35 9 .26 9 .12 

D.4 6 .13 6 .24 6 .34 6 .51 6 .13 5 .81 6 .29 5 .91 5 .97 5 .97 7 .37 6 .40 5 .43 6 .13 5 .86 6 .08 6 .18 5 .59 6 .02 6 .13 

D.5 6 .99 6 .67 6 .99 6 .61 6 .83 6 .50 6 .56 6 .56 6 .28 6 .50 7 .70 7 .05 7 .16 6 .45 6 .72 6 .72 7 .16 6 .89 6 .39 6 .61 

NRE.1 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 

NRE.2 14 .56 15 .00 14 .67 15 .11 15 .00 14 .89 15 .00 15 .56 15 .33 15 .00 15 .89 15 .00 14 .56 15 .22 14 .78 15 .11 14 .78 15 .00 15 .11 15 .56 

NRE.3 23 .21 23 .58 21 .36 22 .72 22 .96 23 .95 24 .07 23 .21 24 .20 23 .58 23 .95 21 .85 22 .84 22 .10 23 .70 23 .46 23 .09 23 .21 22 .72 22 .72 

NRE.4 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 

NRE.5 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 

NRF.1 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 

NRF.2 20 .00 20 .00 18 .00 20 .00 20 .00 20 .00 20 .00 20 .00 18 .44 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 

NRF.3 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 

NRF.4 23 .81 23 .33 21 .43 24 .76 24 .76 25 .00 24 .52 25 .00 21 .43 24 .29 23 .81 22 .86 22 .86 24 .05 24 .52 24 .52 24 .05 22 .62 24 .05 23 .10 

NRF.5 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 

NRG.1 9 .72 10 .36 10 .28 10 .27 10 .42 9 .85 10 .02 10 .30 10 .32 10 .52 9 .79 10 .00 10 .30 10 .45 10 .27 10 .32 10 .51 10 .35 10 .34 10 .31 

NRG.2 8 .81 8 .61 8 .66 8 .81 8 .66 8 .77 8 .14 8 .79 8 .61 8 .74 8 .07 8 .16 8 .81 8 .79 8 .61 8 .79 8 .48 8 .64 8 .87 8 .64 

NRG.3 9 .94 10 .04 9 .98 9 .84 9 .86 9 .96 9 .64 9 .92 9 .90 9 .90 9 .64 9 .64 9 .94 10 .06 10 .00 10 .00 9 .94 9 .92 9 .90 9 .94 

NRG.4 9 .15 9 .25 9 .13 9 .13 9 .09 9 .01 8 .97 9 .15 9 .27 9 .11 8 .89 9 .15 9 .52 9 .01 9 .07 9 .13 9 .21 9 .17 9 .52 9 .11 

NRG.5 10 .08 9 .88 9 .92 10 .02 9 .84 9 .94 9 .92 9 .80 9 .76 10 .06 8 .93 10 .00 9 .70 9 .88 9 .96 9 .92 10 .00 10 .06 9 .66 9 .76 

NRH.1 15 .19 14 .87 14 .92 15 .19 15 .19 14 .97 14 .50 15 .19 14 .97 15 .87 12 .70 14 .81 15 .08 14 .81 14 .71 15 .34 15 .19 14 .71 14 .81 15 .34 

NRH.2 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 

NRH.3 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 

NRH.4 15 .29 15 .75 15 .80 15 .40 15 .69 15 .29 15 .52 15 .52 15 .52 15 .06 15 .52 15 .75 15 .98 15 .52 15 .46 15 .81 15 .52 15 .63 15 .69 15 .11 

NRH.5 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 

CYC.6 20 .00 20 .00 18 .33 20 .00 20 .00 20 .00 21 .67 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 21 .67 20 .00 20 .00 

CYC.7 24 .31 24 .31 24 .31 25 .00 25 .00 25 .00 24 .31 25 .00 24 .31 25 .00 25 .00 25 .00 25 .00 24 .31 23 .61 23 .61 24 .31 25 .69 25 .69 24 .31 

CYC.8 24 .42 24 .13 24 .42 24 .13 24 .71 25 .58 24 .13 24 .71 24 .71 24 .42 24 .42 25 .00 24 .71 25 .29 24 .42 24 .13 24 .42 24 .42 25 .00 24 .71 

CLR.10-4 16 .00 16 .00 16 .00 16 .00 20 .00 16 .00 20 .00 16 .00 20 .00 20 .00 16 .00 16 .00 16 .00 16 .00 20 .00 16 .00 20 .00 20 .00 20 .00 20 .00 

CLR.11-4 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 30 .43 

CLR.12-4 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 

CLR.13-4 52 .17 52 .17 52 .17 52 .17 47 .83 47 .83 47 .83 52 .17 52 .17 52 .17 52 .17 47 .83 52 .17 47 .83 52 .17 52 .17 52 .17 47 .83 52 .17 52 .17 
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Table 8 

Average RPD for each instance and binarization technique: v-shape transfer functions. 

Instance Discretization and v-shape transfer functions 

D 1 D 2 D 3 D 4 D 5 D 1 D 2 D 3 D 4 D 5 D 1 D 2 D 3 D 4 D 5 D 1 D 2 D 3 D 4 D 5 

V 1 V 2 V 3 V 4 

4 .1 2 .76 3 .50 3 .14 3 .30 2 .94 3 .01 3 .08 3 .28 3 .64 3 .05 2 .69 3 .64 3 .19 3 .48 3 .61 3 .23 6 .90 2 .95 3 .57 3 .38 

4 .2 4 .45 4 .20 4 .55 3 .49 4 .18 5 .18 4 .52 4 .88 3 .72 4 .14 3 .95 4 .83 4 .46 4 .15 4 .30 3 .74 5 .62 5 .02 4 .11 4 .34 

4 .3 8 .31 7 .77 7 .73 7 .69 7 .67 7 .40 7 .51 7 .20 8 .54 7 .96 7 .55 8 .64 7 .84 8 .12 7 .59 7 .50 7 .70 7 .64 7 .81 7 .13 

4 .4 4 .95 4 .20 3 .73 4 .89 3 .79 3 .87 4 .22 4 .14 3 .60 4 .15 4 .14 3 .92 3 .91 4 .64 4 .57 3 .92 4 .33 4 .10 3 .70 4 .23 

4 .5 2 .29 2 .86 2 .89 2 .66 2 .32 2 .49 3 .07 2 .42 2 .49 2 .74 2 .94 2 .58 2 .43 2 .81 2 .37 2 .36 2 .79 3 .25 2 .73 2 .54 

4 .6 1 .33 1 .47 1 .83 1 .53 1 .23 1 .57 1 .50 1 .09 1 .42 1 .26 1 .55 1 .40 1 .55 1 .39 1 .15 1 .68 1 .57 1 .70 1 .32 1 .51 

4 .7 2 .49 2 .18 2 .24 2 .22 2 .44 2 .42 2 .35 2 .27 2 .41 1 .91 1 .75 2 .18 2 .60 2 .47 2 .54 2 .17 2 .51 2 .50 2 .11 2 .75 

4 .8 5 .06 5 .43 5 .14 5 .29 5 .15 5 .62 5 .12 4 .56 4 .80 5 .49 5 .28 4 .19 4 .74 5 .35 5 .38 4 .83 5 .87 5 .64 4 .71 3 .88 

4 .9 5 .66 5 .72 5 .73 5 .45 5 .61 5 .62 5 .46 5 .69 5 .94 6 .00 5 .84 5 .65 5 .46 5 .93 5 .21 5 .91 5 .56 5 .40 5 .52 5 .54 

4 .10 2 .69 2 .74 2 .50 2 .13 2 .82 3 .05 2 .52 2 .85 2 .44 2 .96 2 .44 2 .13 2 .68 2 .92 2 .36 2 .26 2 .85 2 .84 2 .38 3 .15 

5 .1 3 .37 3 .76 3 .63 3 .80 4 .57 3 .99 4 .68 3 .72 3 .97 4 .01 3 .63 3 .87 3 .71 3 .47 3 .82 4 .58 3 .38 3 .86 3 .83 3 .76 

5 .2 4 .03 4 .46 4 .69 4 .15 4 .19 4 .27 4 .32 4 .48 3 .86 3 .82 4 .38 4 .14 3 .74 4 .07 4 .37 4 .18 4 .17 4 .37 3 .93 3 .98 

5 .3 3 .13 3 .27 4 .07 3 .35 3 .45 3 .73 3 .69 3 .29 3 .44 3 .38 4 .12 3 .32 3 .39 3 .55 3 .92 3 .50 4 .00 3 .53 3 .22 3 .61 

5 .4 1 .54 1 .58 1 .45 1 .52 1 .57 1 .45 1 .63 1 .46 1 .54 1 .34 1 .54 1 .53 1 .29 1 .57 1 .53 1 .36 1 .58 1 .47 1 .52 1 .49 

5 .5 4 .09 4 .15 4 .33 4 .60 4 .30 4 .27 4 .47 4 .25 4 .41 4 .22 4 .50 4 .45 4 .15 4 .27 4 .17 4 .41 4 .27 4 .47 4 .15 4 .38 

5 .6 6 .49 5 .83 4 .89 6 .43 5 .93 5 .60 6 .06 6 .79 5 .57 6 .12 5 .23 5 .92 5 .76 6 .10 5 .76 6 .10 5 .76 5 .82 5 .70 5 .20 

5 .7 4 .11 4 .66 4 .82 4 .32 4 .82 3 .55 3 .92 4 .33 4 .49 4 .97 4 .77 4 .62 4 .23 4 .62 4 .08 4 .23 4 .02 3 .88 4 .27 4 .97 

5 .8 7 .25 7 .12 7 .09 6 .28 6 .52 6 .57 6 .33 6 .98 6 .68 6 .89 6 .61 6 .47 6 .38 6 .70 6 .62 6 .71 7 .23 6 .70 6 .15 6 .68 

5 .9 0 .72 1 .46 1 .34 0 .58 0 .55 0 .58 0 .72 1 .23 0 .63 1 .22 0 .72 0 .66 0 .61 1 .31 0 .55 1 .28 0 .57 0 .58 1 .08 0 .58 

5 .10 4 .24 4 .25 4 .06 4 .20 4 .42 4 .26 3 .94 4 .20 4 .04 4 .13 4 .00 3 .94 3 .89 4 .16 3 .92 4 .10 4 .25 4 .04 4 .10 3 .96 

6 .1 7 .10 7 .05 6 .84 6 .52 6 .76 7 .03 5 .94 6 .79 7 .25 7 .44 6 .47 6 .52 7 .37 7 .39 6 .11 6 .64 7 .87 7 .05 6 .98 7 .49 

6 .2 2 .74 2 .74 2 .99 2 .95 2 .95 2 .74 3 .03 3 .10 3 .01 2 .74 2 .15 2 .74 2 .97 2 .94 2 .74 3 .03 2 .92 2 .74 3 .06 2 .74 

6 .3 5 .47 4 .99 5 .66 4 .83 5 .26 5 .22 4 .76 4 .99 4 .85 5 .06 5 .17 4 .87 4 .67 5 .20 5 .36 5 .06 4 .97 4 .74 5 .08 5 .43 

6 .4 2 .98 3 .00 2 .82 3 .13 3 .05 3 .05 3 .21 3 .10 2 .95 2 .65 3 .05 2 .75 2 .70 3 .05 2 .95 2 .93 3 .00 2 .60 2 .72 2 .90 

6 .5 4 .97 4 .76 4 .91 5 .05 4 .39 4 .70 5 .07 5 .11 5 .22 5 .09 4 .93 5 .09 5 .49 4 .99 4 .97 4 .82 4 .72 4 .45 5 .01 5 .01 

A.1 8 .56 8 .59 9 .14 9 .09 9 .01 9 .20 9 .20 9 .03 9 .03 8 .91 8 .84 9 .06 9 .01 8 .92 8 .87 8 .99 8 .79 8 .83 8 .88 8 .88 

A.2 5 .25 5 .13 5 .37 5 .13 5 .21 5 .11 5 .20 5 .17 5 .46 5 .30 5 .28 5 .16 5 .34 5 .08 4 .99 5 .25 5 .20 5 .20 5 .13 5 .26 

A.3 5 .79 4 .83 5 .01 5 .57 5 .24 5 .13 5 .10 5 .16 5 .20 4 .77 4 .94 4 .54 5 .07 5 .70 5 .07 5 .73 5 .50 5 .99 5 .16 5 .65 

A.4 4 .90 5 .40 4 .94 5 .11 4 .96 4 .87 5 .28 5 .20 4 .87 5 .11 5 .28 4 .99 5 .23 4 .81 5 .09 4 .97 5 .16 5 .10 4 .86 5 .11 

A.5 1 .10 1 .19 1 .17 1 .21 1 .33 1 .19 1 .17 1 .05 1 .10 1 .14 1 .34 1 .05 1 .29 1 .24 1 .34 1 .20 1 .27 1 .09 1 .27 1 .27 

B.1 8 .21 8 .12 8 .12 8 .12 7 .87 7 .87 8 .26 8 .16 8 .89 7 .58 8 .55 8 .07 8 .36 8 .55 7 .97 8 .36 7 .39 8 .41 8 .21 8 .12 

B.2 11 .75 11 .97 11 .23 11 .18 12 .15 12 .11 10 .83 11 .40 11 .75 10 .75 12 .50 11 .71 10 .83 11 .93 11 .18 10 .75 11 .54 11 .40 11 .62 10 .79 

B.3 3 .21 4 .04 3 .58 3 .92 4 .33 3 .50 2 .96 3 .71 3 .46 4 .08 3 .96 3 .38 3 .50 3 .75 4 .08 3 .08 3 .75 3 .08 2 .83 3 .46 

B.4 6 .33 6 .33 6 .33 6 .33 6 .33 6 .33 6 .62 6 .33 6 .33 6 .33 6 .84 6 .33 5 .86 6 .33 6 .33 6 .33 6 .33 6 .58 6 .33 6 .33 

B.5 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 1 .39 

C.1 3 .35 3 .52 3 .35 3 .29 3 .22 3 .25 3 .39 3 .30 3 .35 3 .25 3 .45 3 .52 3 .38 3 .30 3 .52 3 .39 3 .37 3 .31 3 .30 3 .41 

C.2 4 .84 5 .08 5 .39 4 .75 5 .14 4 .60 5 .48 4 .73 5 .56 5 .33 5 .14 4 .81 5 .24 5 .21 5 .62 5 .81 4 .89 5 .19 5 .13 5 .07 

C.3 9 .57 9 .44 9 .26 9 .40 9 .37 9 .68 9 .95 9 .38 9 .33 8 .82 9 .31 9 .36 9 .56 9 .73 9 .44 9 .55 8 .86 9 .57 8 .81 9 .48 

C.4 8 .89 9 .27 9 .41 9 .33 9 .42 8 .80 9 .24 9 .63 9 .30 10 .12 9 .36 9 .24 9 .12 9 .50 9 .09 8 .75 8 .92 9 .06 9 .32 8 .78 

C.5 6 .42 6 .84 7 .01 6 .54 7 .01 6 .81 7 .15 7 .30 6 .93 7 .69 6 .43 6 .82 6 .99 6 .64 6 .93 7 .09 7 .09 7 .13 6 .33 6 .74 

D.1 8 .64 7 .67 7 .39 6 .94 7 .89 7 .44 6 .78 7 .28 7 .44 7 .67 7 .72 7 .59 7 .83 7 .78 8 .87 7 .83 7 .33 7 .00 7 .78 7 .94 

D.2 6 .06 6 .06 6 .06 6 .06 6 .06 6 .06 6 .06 6 .06 6 .06 5 .66 6 .06 6 .06 6 .06 5 .71 5 .71 6 .06 6 .06 6 .06 6 .06 6 .06 

D.3 9 .44 9 .44 9 .31 9 .07 9 .21 9 .40 9 .07 9 .21 9 .21 9 .07 9 .72 9 .21 9 .17 9 .21 9 .21 9 .72 9 .40 9 .31 9 .72 9 .72 

D.4 5 .97 6 .40 5 .91 5 .48 6 .08 6 .40 6 .02 6 .45 6 .83 5 .81 5 .97 6 .02 6 .18 6 .18 6 .08 6 .18 6 .29 6 .02 6 .61 6 .08 

D.5 6 .61 7 .05 6 .56 6 .89 6 .72 6 .83 6 .78 6 .94 6 .50 7 .21 6 .94 6 .45 6 .56 6 .72 6 .72 6 .89 6 .39 6 .67 6 .83 6 .67 

NRE.1 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 3 .45 

NRE.2 14 .89 15 .00 15 .00 15 .44 15 .33 13 .33 15 .00 15 .11 14 .56 14 .67 15 .11 14 .89 15 .67 14 .67 15 .44 15 .11 15 .11 15 .33 14 .89 15 .44 

NRE.3 22 .72 22 .35 22 .47 23 .46 22 .59 23 .95 22 .35 22 .72 23 .58 22 .59 21 .60 22 .59 22 .47 22 .72 22 .96 22 .22 23 .21 22 .35 18 .02 23 .09 

NRE.4 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 17 .86 16 .90 17 .86 

NRE.5 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 7 .14 

NRF.1 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 

NRF.2 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 18 .22 20 .00 

NRF.3 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 21 .43 

NRF.4 23 .33 24 .05 23 .10 24 .05 23 .81 22 .62 24 .05 20 .48 22 .86 23 .81 23 .33 23 .57 24 .29 22 .86 23 .33 24 .05 21 .43 23 .10 21 .43 23 .81 

NRF.5 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 23 .08 

NRG.1 10 .19 10 .32 10 .17 10 .40 10 .21 10 .36 10 .28 10 .23 10 .44 10 .32 10 .30 10 .51 10 .45 10 .19 10 .27 10 .53 10 .28 10 .42 10 .36 10 .34 

NRG.2 8 .66 8 .77 8 .72 8 .70 8 .44 8 .87 8 .79 8 .83 8 .96 8 .94 8 .92 8 .87 9 .18 8 .70 9 .05 8 .61 8 .85 8 .96 9 .05 8 .90 

NRG.3 9 .98 10 .02 9 .88 9 .84 10 .02 9 .94 10 .02 9 .94 9 .94 9 .98 9 .94 10 .00 9 .98 9 .96 9 .96 9 .94 9 .94 10 .06 10 .00 9 .96 

NRG.4 9 .09 9 .52 9 .29 8 .85 9 .21 9 .21 9 .13 9 .21 9 .09 8 .95 9 .07 9 .09 9 .19 8 .99 9 .03 8 .95 9 .15 9 .27 9 .13 9 .29 

NRG.5 10 .04 9 .66 9 .78 9 .90 9 .82 9 .90 10 .00 10 .14 9 .90 9 .52 9 .92 9 .96 9 .82 9 .98 9 .82 9 .98 10 .26 10 .04 10 .14 9 .94 

NRH.1 14 .39 15 .08 15 .40 14 .97 15 .03 15 .29 15 .08 14 .87 14 .87 14 .87 15 .24 14 .97 14 .76 15 .45 14 .92 14 .92 15 .13 14 .55 15 .13 14 .92 

NRH.2 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 6 .35 

NRH.3 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 16 .95 

NRH.4 15 .52 15 .29 15 .86 15 .69 15 .52 15 .52 15 .52 15 .86 15 .92 15 .52 15 .52 15 .52 16 .03 15 .80 15 .52 15 .52 15 .52 15 .23 15 .34 15 .80 

NRH.5 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 10 .91 

CYC.6 18 .33 20 .00 18 .33 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 20 .00 18 .33 20 .00 20 .00 21 .67 20 .00 20 .00 20 .00 20 .00 20 .00 

CYC.7 24 .31 25 .00 24 .31 23 .61 25 .00 25 .69 23 .61 25 .00 25 .00 25 .69 25 .00 25 .00 24 .31 24 .31 25 .00 25 .00 24 .31 24 .31 25 .69 25 .00 

CYC.8 24 .42 25 .00 24 .71 25 .00 24 .71 24 .42 24 .42 24 .42 24 .42 25 .29 25 .00 24 .71 24 .13 23 .55 25 .29 24 .42 24 .71 24 .42 23 .84 24 .42 

CLR.10-4 20 .00 16 .00 20 .00 16 .00 16 .00 16 .00 16 .00 20 .00 16 .00 20 .00 16 .00 16 .00 20 .00 16 .00 20 .00 20 .00 16 .00 16 .00 16 .00 16 .00 

CLR.11-4 30 .43 34 .78 30 .43 30 .43 30 .43 34 .78 30 .43 30 .43 30 .43 30 .43 30 .43 34 .78 30 .43 30 .43 34 .78 30 .43 30 .43 30 .43 30 .43 30 .43 

CLR.12-4 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 34 .78 

CLR.13-4 47 .83 52 .17 52 .17 52 .17 52 .17 47 .83 52 .17 47 .83 52 .17 52 .17 52 .17 47 .83 52 .17 47 .83 47 .83 52 .17 52 .17 47 .83 52 .17 47 .83 
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Table 9 

Statistical analysis. Percentage of cases in which a binarization technique offers the best significant performance compared to all others. 

Discr. Trans. Instance set 

4 5 6 A B C D NRE NRF NRG NRH CYC CLR 

D 1 S 1 1 .87% 2 .62% 2 .46% 3 .03% 1 .97% 2 .47% 2 .08% 3 .85% 0 .00% 4 .55% 2 .36% 3 .78% 0 .35% 

D 2 3 .79% 2 .06% 1 .36% 2 .90% 2 .37% 2 .68% 2 .08% 0 .38% 0 .69% 1 .22% 0 .39% 3 .24% 3 .90% 

D 3 2 .72% 2 .06% 1 .86% 2 .64% 2 .50% 2 .88% 1 .77% 7 .69% 20 .49% 0 .78% 0 .39% 7 .57% 2 .48% 

D 4 2 .99% 2 .62% 1 .61% 3 .03% 1 .97% 2 .88% 2 .49% 0 .00% 0 .00% 0 .44% 1 .97% 3 .24% 7 .80% 

D 5 2 .08% 2 .47% 1 .61% 2 .11% 4 .34% 2 .57% 2 .28% 0 .38% 0 .00% 1 .11% 0 .39% 2 .70% 1 .42% 

D 1 S 2 3 .15% 2 .77% 3 .22% 1 .71% 2 .37% 2 .47% 5 .50% 0 .77% 0 .00% 4 .88% 3 .94% 0 .00% 4 .96% 

D 2 0 .11% 0 .00% 0 .08% 0 .00% 0 .26% 0 .10% 2 .28% 0 .38% 0 .00% 12 .32% 3 .15% 1 .62% 0 .00% 

D 3 1 .60% 1 .54% 4 .15% 1 .84% 5 .39% 3 .30% 2 .39% 0 .00% 0 .00% 1 .55% 0 .79% 1 .08% 1 .77% 

D 4 2 .40% 2 .93% 3 .05% 3 .95% 2 .11% 2 .57% 3 .01% 0 .00% 22 .57% 2 .33% 1 .97% 3 .78% 0 .00% 

D 5 3 .47% 4 .01% 3 .22% 3 .29% 1 .97% 2 .47% 1 .35% 0 .38% 0 .00% 0 .44% 2 .36% 2 .70% 2 .48% 

D 1 S 3 3 .15% 2 .77% 3 .14% 3 .82% 2 .24% 1 .44% 0 .00% 0 .00% 0 .00% 17 .54% 16 .93% 1 .08% 2 .13% 

D 2 0 .11% 0 .00% 0 .00% 0 .13% 0 .00% 0 .00% 4 .15% 5 .00% 1 .39% 12 .10% 1 .18% 0 .00% 7 .09% 

D 3 3 .21% 2 .52% 3 .05% 2 .24% 2 .37% 2 .27% 1 .77% 3 .85% 0 .35% 1 .55% 0 .39% 1 .62% 7 .09% 

D 4 2 .88% 2 .62% 1 .27% 1 .98% 2 .37% 2 .37% 4 .36% 2 .69% 0 .00% 1 .00% 1 .97% 3 .78% 5 .32% 

D 5 1 .98% 2 .06% 1 .69% 1 .98% 4 .21% 2 .68% 1 .04% 1 .54% 0 .00% 1 .22% 2 .76% 1 .62% 0 .71% 

D 1 S 4 2 .30% 2 .57% 3 .64% 2 .50% 2 .76% 3 .81% 2 .18% 0 .38% 0 .00% 1 .00% 0 .39% 0 .00% 0 .00% 

D 2 0 .27% 0 .00% 0 .08% 0 .26% 0 .00% 0 .21% 1 .66% 1 .54% 0 .00% 2 .00% 1 .97% 3 .24% 5 .67% 

D 3 2 .19% 4 .16% 2 .71% 1 .98% 1 .97% 2 .57% 2 .60% 0 .38% 2 .43% 1 .66% 3 .15% 0 .00% 8 .51% 

D 4 2 .94% 2 .88% 3 .31% 3 .43% 2 .37% 2 .06% 3 .12% 0 .38% 0 .00% 2 .00% 0 .39% 0 .00% 0 .71% 

D 5 3 .15% 2 .26% 1 .69% 1 .71% 2 .89% 1 .96% 5 .09% 0 .00% 0 .00% 2 .33% 4 .72% 2 .16% 0 .00% 

D 1 V 1 2 .51% 3 .34% 3 .05% 4 .22% 2 .11% 3 .71% 1 .56% 0 .38% 0 .69% 2 .00% 7 .48% 11 .35% 2 .13% 

D 2 2 .08% 1 .85% 3 .31% 4 .08% 1 .97% 2 .06% 1 .97% 1 .15% 0 .00% 1 .11% 3 .94% 2 .16% 0 .00% 

D 3 2 .24% 2 .72% 1 .61% 2 .24% 2 .37% 2 .27% 2 .39% 0 .77% 1 .39% 1 .78% 0 .39% 3 .78% 0 .00% 

D 4 3 .90% 2 .93% 1 .78% 1 .84% 2 .63% 3 .71% 3 .53% 0 .00% 0 .00% 3 .44% 1 .18% 3 .24% 2 .48% 

D 5 2 .56% 2 .57% 2 .46% 1 .71% 2 .24% 3 .19% 2 .18% 0 .38% 0 .00% 3 .11% 1 .97% 0 .00% 0 .71% 

D 1 V 2 2 .30% 3 .55% 3 .39% 2 .77% 2 .11% 3 .81% 2 .80% 15 .00% 0 .69% 0 .44% 1 .97% 0 .00% 5 .32% 

D 2 2 .35% 2 .11% 3 .73% 1 .98% 3 .82% 2 .27% 2 .28% 1 .15% 0 .00% 1 .11% 1 .57% 5 .41% 1 .42% 

D 3 2 .56% 1 .80% 1 .69% 3 .95% 1 .71% 2 .78% 1 .77% 0 .38% 11 .81% 1 .44% 1 .18% 0 .54% 2 .13% 

D 4 3 .10% 3 .03% 1 .69% 3 .03% 2 .11% 2 .27% 2 .39% 3 .85% 0 .00% 0 .44% 0 .79% 1 .08% 2 .48% 

D 5 2 .72% 2 .47% 3 .90% 2 .37% 3 .68% 2 .27% 4 .78% 3 .08% 0 .00% 4 .33% 1 .97% 1 .62% 0 .71% 

D 1 V 3 4 .11% 1 .95% 3 .47% 2 .24% 1 .18% 3 .09% 0 .52% 5 .00% 0 .69% 0 .55% 1 .97% 2 .70% 7 .09% 

D 2 2 .88% 2 .57% 3 .90% 5 .53% 1 .97% 2 .78% 2 .80% 0 .77% 0 .00% 0 .44% 1 .97% 3 .78% 2 .84% 

D 3 2 .30% 4 .16% 2 .63% 1 .84% 3 .16% 2 .47% 3 .12% 1 .92% 0 .00% 0 .89% 0 .39% 0 .00% 0 .00% 

D 4 2 .08% 2 .57% 1 .53% 3 .29% 1 .97% 3 .09% 5 .30% 2 .69% 1 .74% 1 .33% 0 .39% 6 .49% 0 .35% 

D 5 2 .94% 2 .98% 4 .07% 2 .50% 2 .50% 2 .06% 4 .67% 0 .00% 0 .69% 1 .22% 2 .36% 0 .54% 0 .00% 

D 1 V 4 3 .26% 1 .75% 1 .86% 1 .98% 3 .95% 2 .06% 0 .83% 0 .77% 0 .00% 2 .33% 1 .57% 1 .08% 0 .00% 

D 2 1 .50% 4 .16% 1 .78% 2 .11% 3 .42% 2 .78% 2 .28% 0 .38% 11 .11% 0 .67% 1 .97% 2 .70% 2 .84% 

D 3 2 .35% 3 .03% 5 .76% 3 .29% 2 .63% 2 .37% 2 .08% 1 .92% 0 .00% 0 .33% 11 .42% 2 .70% 0 .00% 

D 4 2 .67% 2 .77% 2 .12% 2 .64% 4 .21% 4 .84% 1 .04% 30 .77% 23 .26% 0 .44% 3 .54% 7 .03% 0 .00% 

D 5 3 .21% 2 .77% 3 .05% 1 .84% 3 .82% 2 .37% 0 .52% 0 .00% 0 .00% 0 .55% 0 .39% 0 .54% 7 .09% 

100 .00% 100 .00% 100 .00% 100 .00% 100 .00% 100 .00% 100 .00% 100 .00% 100 .00% 100 .00% 100 .00% 100 .00% 100 .00% 
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values are given by 

r v p f t = 

1 

5 

∑ 

d∈ D 1 ,D 2 , ... ,D 5 
r v p f 

d,t 
. 

Analyzing this table, we could recommend V 3 and V 4 transfer func-

tions for solving small and medium problems and S 3 for solving

large problems. Moreover, we check that as problem size grows,

the variation observed in term of performance in the transfer func-

tions is increased ( Avg. field). Hence, it is especially significant to

select an adequate transfer function for solving large problems. 

Table 11 is sorted based on the indicative order defined for

discretization functions in Section 5.2 , i.e. , from more exploratory

to more exploitative strategies. Studying this table, we find the

following trend: as problem size grows, discretization techniques

with a better exploration to exploitation ratio outperform the oth-

ers. The same behavior is shown in Table 13 , where RVP values are

presented for each family regardless of the transfer function con-

sidered. To this end, the values are given by 

r v p f 
d 

= 

1 

8 

∑ 

t∈ S 1 ,S 2 , ... ,S 4 ,V 1 ,V 2 , ... ,V 4 
r v p f 

d,t 
. 

Analyzing this table, we could recommend D 1 and D 4 discretiza-

tion functions for solving all the problems. Moreover and as for the

transfer functions, we check that as problem size grows, the varia-
ion observed in term of performance in the discretization func-

ions is increased. Hence, it is especially significant to select an

dequate discretization function for solving large problems. Addi-

ionally, if we compare the Avg. field of Tables 12 and 13 , we check

hat the values observed are similar. Hence, we conclude that both

ypes of techniques influence the behavior of the solving method

nd therefore, we cannot focus only on one of them. 

In terms of RPD, we study how affects using an adequate bina-

ization technique. Table 14 compares the results obtained through

he original BCSO to the binarization techniques analyzed in this

ork. In this table, di f f 
rpd 

is the difference between the RPD value

btained from the best binarization technique in this work, rpd

eld, and the original BCSO, rpd (original) field. Analyzing this ta-

le, we note that the algorithm provides a clear better behavior

hen an adequate binarization technique is assumed. This way, the

PD value decreases up to 26.19% for the instance set 4, 16.18% for

he instance set 5, 10.23% for the instance set 6, 8.32% for the in-

tance set A, 10.25% for the instance set B, 6.56% for the instance

et C, 6.37% for the instance set D, 12.43% for the instance set NRE,

.90% for the instance set NRF, 5.74% for the instance set NRG,

.55% for the instance set NRH, 6.20% for the instance set CYC, and

.08% for the instance set CLR. 

From this study and as a summary, we reach the following six

ajor conclusions: 
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Table 10 

RVP metric for each family of instance sets and binarization approach, where the 

values are grouped by transfer functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 

RVP metric for each family of instance sets and binarization approach, where the 

values are grouped by discretization functions. 

Table 12 

RVP metric for each family of instance sets regardless of the discretization func- 

tion considered. 

Table 13 

RVP metric for each family of instance sets regardless of the transfer function 

considered. 
• We find significant performance differences according to the

binarization approach assumed when an SIA (the BCSO) is

adapted to the discrete scope. Hence, we conclude that it is

crucial to select an adequate binarization approach. Otherwise,

it is possible that the algorithm does not reach its full poten-

tial as occurs with the original BCSO compared to the recom-

mended configurations obtained in this work. As a direct result

of this statement, it is possible that other algorithms could be

improved by studying other binarization approaches. 
• We conclude that both transfer and discretization functions

greatly affect the behavior of the solving method and therefore,

we cannot focus only on one of them. 
• Regarding transfer functions, we find that v-shape functions are

fit for solving limited search space problems and s-shape func-

tions are fit for solving large search space problems. Concretely,

we recommend V 3 and V 4 transfer functions for solving small

and medium problems, and S 3 for solving large problems. 
• Regarding discretization functions, we find that as problem size

grows, discretization techniques with a better exploration to

exploitation ratio outperform the others. Concretely, we rec-

ommend D 1 and D 4 discretization functions for solving all the

problems. 
• We reach that it is especially significant to select an adequate

binarization approach for solving large problems as the varia-

tions observed in applying different techniques are higher. 
• We appreciably increase the BCSO performance after selecting

an adequate binarization approach for each instance. At this

point, we cannot recommend this algorithm for solving the SCP,
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Table 14 

Comparing the results obtained through the original BCSO to the binarization techniques analyzed 

in this work. 

Inst. Trans. Discr. z opt z best z avg rpd rpd (original) di f f 
rpd 

4 .1 S 2 D 1 429 432 440 .07 2 .58 6 .44 59 .94% 

4 .2 V 1 D 4 512 517 529 .87 3 .49 6 .22 43 .89% 

4 .3 V 4 D 5 516 531 552 .77 7 .13 7 .93 10 .09% 

4 .4 S 2 D 1 494 496 510 .23 3 .29 3 .90 15 .64% 

4 .5 S 2 D 5 512 514 523 .23 2 .19 2 .75 20 .36% 

4 .6 V 2 D 3 560 560 566 .10 1 .09 1 .24 12 .10% 

4 .7 V 3 D 1 430 434 437 .53 1 .75 2 .18 19 .72% 

4 .8 V 4 D 5 492 494 511 .07 3 .88 4 .98 22 .09% 

4 .9 V 3 D 5 641 660 674 .37 5 .21 6 .04 13 .74% 

4 .10 V 3 D 2 514 518 524 .93 2 .13 2 .63 19 .01% 

Avg. — — — — — 3 .27 4 .43 26 .19% 

5 .1 V 1 D 1 253 258 261 .54 3 .37 3 .77 10 .61% 

5 .2 V 3 D 3 302 306 313 .30 3 .74 5 .11 26 .81% 

5 .3 S 2 D 4 226 229 232 .73 2 .98 3 .58 16 .76% 

5 .4 V 3 D 3 242 242 245 .13 1 .29 1 .49 13 .42% 

5 .5 S 1 D 3 211 216 219 .43 4 .00 4 .31 7 .19% 

5 .6 V 1 D 3 213 217 223 .41 4 .89 6 .12 20 .10% 

5 .7 V 2 D 1 293 294 303 .40 3 .55 4 .60 22 .83% 

5 .8 V 4 D 4 288 294 305 .70 6 .15 6 .42 4 .21% 

5 .9 S 2 D 5 279 280 280 .42 0 .51 1 .49 65 .77% 

5 .10 S 4 D 3 265 271 274 .80 3 .70 3 .92 5 .61% 

Avg. — — — — — 3 .42 4 .08 16 .18% 

6 .1 V 2 D 2 138 143 146 .20 5 .94 6 .57 9 .59% 

6 .2 V 3 D 1 146 146 149 .13 2 .15 2 .74 21 .53% 

6 .3 V 3 D 3 145 148 151 .77 4 .67 5 .15 9 .32% 

6 .4 V 4 D 3 131 133 134 .40 2 .60 2 .65 1 .89% 

6 .5 V 1 D 5 161 165 168 .07 4 .39 4 .87 9 .86% 

Avg. — — — — — 3 .95 4 .40 1 0 .23% 

A.1 V 1 D 1 253 271 274 .67 8 .56 9 .16 6 .55% 

A.2 S 3 D 1 252 259 264 .27 4 .87 5 .16 5 .62% 

A.3 V 3 D 2 232 238 242 .53 4 .54 5 .19 12 .52% 

A.4 S 2 D 4 234 241 244 .90 4 .66 5 .07 8 .09% 

A.5 V 2 D 3 236 237 238 .47 1 .05 1 .27 17 .32% 

Avg. — — — — — 4 .74 5 .17 8 .32% 

B.1 S 1 D 5 69 70 73 .70 6 .81 8 .79 22 .53% 

B.2 S 2 D 3 76 80 83 .80 10 .26 10 .26 0 .00% 

B.3 S 3 D 5 80 80 82 .27 2 .83 3 .50 19 .14% 

B.4 V 3 D 3 79 81 83 .63 5 .86 6 .33 7 .42% 

B.5 S 1 D 1 72 73 73 .00 1 .39 1 .39 0 .00% 

Avg. — — — — — 5 .43 6 .05 10 .25% 

C.1 V 1 D 5 227 232 234 .30 3 .22 3 .39 5 .01% 

C.2 V 2 D 1 219 225 229 .07 4 .60 5 .43 15 .29% 

C.3 S 1 D 2 243 251 264 .07 8 .67 9 .42 7 .96% 

C.4 S 1 D 3 219 231 237 .70 8 .54 8 .86 3 .61% 

C.5 V 4 D 4 215 222 228 .60 6 .33 6 .47 2 .16% 

Avg. — — — — — 6 .27 6 .71 6 .56% 

D.1 S 4 D 4 60 60 64 .03 6 .72 7 .33 8 .32% 

D.2 S 4 D 5 66 69 69 .70 5 .61 6 .06 7 .43% 

D.3 S 1 D 2 72 76 78 .50 9 .03 9 .44 4 .34% 

D.4 S 3 D 3 62 63 65 .37 5 .43 5 .91 8 .12% 

D.5 S 2 D 4 61 64 64 .83 6 .28 6 .56 4 .27% 

Avg. — — — — — 6 .61 7 .06 6 .37% 

NRE.1 S 1 D 1 29 30 30 .00 3 .45 3 .45 0 .00% 

NRE.2 V 2 D 1 30 34 34 .00 13 .33 15 .56 14 .33% 

NRE.3 V 4 D 4 27 29 31 .87 18 .02 23 .21 22 .36% 

NRE.4 V 4 D 4 28 32 32 .73 16 .90 17 .86 5 .38% 

NRE.5 S 1 D 1 28 30 30 .00 7 .14 7 .14 0 .00% 

Avg. — — — — — 11 .77 13 .44 12 .43% 

NRF.1 S 1 D 1 14 17 17 .00 21 .43 21 .43 0 .00% 

NRF.2 S 1 D 3 15 16 17 .70 18 .00 20 .00 10 .00% 

NRF.3 S 1 D 1 14 17 17 .00 21 .43 21 .43 0 .00% 

NRF.4 V 2 D 3 14 15 16 .87 20 .48 25 .00 18 .08% 

NRF.5 S 1 D 1 13 16 16 .00 23 .08 23 .08 0 .00% 

Avg. — — — — — 20 .88 22 .19 5 .90% 

NRG.1 S 1 D 1 176 191 193 .10 9 .72 10 .30 5 .63% 

NRG.2 S 3 D 1 154 165 166 .43 8 .07 8 .79 8 .19% 

NRG.3 S 2 D 2 166 182 182 .00 9 .64 9 .92 2 .82% 

NRG.4 V 1 D 4 168 180 182 .87 8 .85 9 .15 3 .28% 

NRG.5 S 3 D 1 168 183 183 .00 8 .93 9 .80 8 .88% 

Avg. — — — — — 9 .04 9 .59 5 .74% 

NRH.1 S 3 D 3 63 69 71 .00 12 .70 15 .19 16 .39% 

NRH.2 S 1 D 1 63 67 67 .00 6 .35 6 .35 0 .00% 

NRH.3 S 1 D 1 59 69 69 .00 16 .95 16 .95 0 .00% 

NRH.4 S 2 D 5 58 64 66 .73 15 .06 15 .52 2 .96% 

( continued on next page ) 
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Table 14 ( continued ) 

Inst. Trans. Discr. z opt z best z avg rpd rpd (original) di f f 
rpd 

NRH.5 S 1 D 1 55 61 61 .00 10 .91 10 .91 0 .00% 

Avg. — — — — — 12 .39 12 .98 4 .55% 

CYC.6 S 1 D 3 60 66 72 .00 18 .33 20 .00 8 .35% 

CYC.7 S 3 D 5 144 172 178 .00 23 .61 25 .00 5 .56% 

CYC.8 V 3 D 4 344 418 435 .00 23 .55 24 .71 4 .69% 

Avg. — — — — — 21 .83 23 .24 6 .20% 

CLR.10 S 1 D 1 25 28 29 .00 16 .00 16 .00 0 .00% 

CLR.11 S 1 D 1 23 28 30 .00 30 .43 30 .43 0 .00% 

CLR.12 S 1 D 1 23 29 31 .00 34 .78 34 .78 0 .00% 

CLR.13 S 1 D 5 23 31 34 .00 47 .83 52 .17 8 .32% 

Avg. — — — — — 32 .26 33 .35 2 .08% 
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because it is far from other current state-of-the-art techniques

in terms of performance. However, the BCSO has proven to be a

good algorithm for studying a relevant aspect, such as binariza-

tion. Hence, we recommend this algorithm as a possible testing

bench for future works. 

. Implementation details 

Both the problem definition introduced in Section 3 and the

olving methodology discussed in Section 4 were coded in Java as-

uming NetBeans IDE 7.1 and executed on a 2.53 GHz Intel Core

3 M380 processor with 3 GB RAM under Windows 7. Regarding

he statistical tools, the Wilcoxon–Mann–Whitney’s test was taken

rom Fonseca, Knowles, Thiele, and Zitzler and both Shapiro–Wilk’s

nd Kolmogorov–Smirnov–Lilliefor’s tests were taken from the IBM

PSS software. 

. Final remarks 

The SCP is a traditional optimization problem widely consid-

red for designing expert systems. We find many papers assuming

etaheuristics for solving the SCP in the current literature. How-

ver, many metaheuristics are defined for solving continuous opti-

ization problems, specially SIAs, while the SCP is a discrete prob-

em. Hence, such algorithms should be adapted for working on the

iscrete scope. However, most authors did not perform any study

o select a concrete binarization approach. This circumstance might

ead to the conclusion that selecting a concrete binarization tech-

ique does not influence the behavior of the algorithm, but rather

he general approach of the metaheuristic. This situation led us to

rite this paper focusing on the inherent difficulty in binarization

f metaheuristics designed for continuous optimization, when solv-

ng a discrete optimization problem, concretely the SCP. 

With the purpose of analyzing such difficulty, we consider a re-

ent SIA which was later adapted to the discrete scope for solving

he SCP, the BCSO algorithm. We change the original formulation of

CSO by combining eight transfer functions and five discretization

unctions from the current literature, i.e. , forty binarization tech-

iques. 

Based on an accepted statistical methodology, we analyze the

esults obtained while solving two problems sets: the standard

R-library and the unicost benchmark. As a result of this study,

e reach six major conclusions: a)It is crucial to select an ad-

quate binarization approach to guarantee that the solving algo-

ithm reaches its full potential. b) Both transfer and discretization

unctions affect the behavior of the solving method. c) Regard-

ng transfer functions, v-shape functions are fit for solving limited

earch space problems and s-shape functions are fit for solving

arge search space problems. We recommend V 3 and V 4 for solv-

ng small and medium problems and S 3 for solving large problems.

) As problem size grows, discretization techniques with a better
xploration to exploitation ratio outperform the others. We recom-

end D 1 and D 4 for solving all the problems. e) it is especially

ignificant to select an adequate binarization approach for solving

arge problems. f) We recommend BCSO as a possible testing bench

or future works. 

As future lines of research, it would be interesting to consider

ther metaheuristics, including some of which give the best re-

ults solving the SCP in the current literature. To this end, we

hould complete the benchmark by adding large SCP problems

o analyze the differences observed, e.g. , the dataset available in

ttp://people.sabanciuniv.edu/sibirbil/scp/ .This is due to such tech-

iques get optimal or near optimal solutions for the instances as-

umed in this work. 
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