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Abstract: For years, extensive research has been in the binarization of continuous metaheuristics for

solving binary-domain combinatorial problems. This paper is a continuation of a previous review

and seeks to draw a comprehensive picture of the various ways to binarize this type of metaheuristics;

the study uses a standard systematic review consisting of the analysis of 512 publications from 2017 to

January 2022 (5 years). The work will provide a theoretical foundation for novice researchers tackling

combinatorial optimization using metaheuristic algorithms and for expert researchers analyzing the

binarization mechanism’s impact on the metaheuristic algorithms’ performance. Structuring this

information allows for improving the results of metaheuristics and broadening the spectrum of binary

problems to be solved. We can conclude from this study that there is no single general technique

capable of efficient binarization; instead, there are multiple forms with different performances.

Keywords: combinatorial problems; continuous metaheuristics; binarization; discretization methods; review

MSC: 68-02

1. Introduction

Information technologies have experienced exponential growth, generating multi-
ple optimization problems. These problems can be classified into two main subfields:
stochastic and deterministic optimization problems. The latter includes (a) unrestricted
and constrained continuous optimization; (b) discrete optimization, which can be divided
into integer programming and combinatorial optimization. The manuscript’s focus is
combinatorial optimization, which deals with problems where the set of feasible solutions
is discrete or can be reduced to a discrete set.

The reason for focusing on combinatorial optimization problems is because of their
great impact on real-world problems. For example, several authors have modeled com-
binatorial problems such as Emergency Humanitarian Logistics [1], Manufacturing Cell
Design Problem [2], Brain Tumors Diagnosis and Prediction [3], Airline and Plant Location
Selection [4], Antenna Positioning Problem [5], Disaster Management System [6], Electro-
cardiogram Arrhythmia Classification [7], Dynamic Vehicle Routing Problem [8], Sales
Territory Design Problem [9], Buttressed Walls Problem [10], Facility Location Problem [11],
Gene Selection Problem [12], Hierarchized Steiner Tree Problems in Telecommunication
Networks [13], Susceptible-Exposed-Infectious Vigilant Epidemic Model [14].
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Many techniques for solving combinatorial optimization problems can be classified
into exact and approximation methods. The former includes branch and cut [15,16] and
branch and bound [17–19]. The latter includes heuristic and metaheuristic approaches. The
latter has gained enormous popularity over exact methods due to their simplicity and the
results’ robustness when the combinatorial problem is of high dimension.

Thanks to the no-free lunch theorem [20], which tells us that there is no supreme
algorithm that solves all problems, researchers develop new metaheuristics every year.
This great interest led to the development of metaheuristics with very good performance,
such as Particle Swarm Optimization [21], Ant Colony Optimization [22], Artificial Bee
Colony [23], Bat Algorithm [24], Cuckoo Search [25], Firefly Algorithm [26], Grey Wolf
Optimizer [27], Sine Cosine Algorithm [28], Whale Optimization Algorithm [29], Dragonfly
Algorithm [30], among others.

These metaheuristics have one feature in common: They were designed to solve
problems with a continuous domain of variables. Therefore, the need arises to perform
a binarization process. With binarization, we can use popular continuous metaheuristics
with very good performance on binary combinatorics problems.

In this context and given the importance that metaheuristics have taken on in solving
complex combinatorial problems, this paper presents a systematic review of articles pub-
lished between 2017 and 2022 to deepen and extract techniques or mechanisms to binarize
metaheuristic algorithms that they operate in continuous search spaces. This manuscript is
an update of the literature review presented in [31]. It will provide a theoretical foundation
for young researchers tackling combinatorial optimization using metaheuristic algorithms
and for experienced researchers looking at the impact of the binarization mechanism on
the performance of metaheuristic algorithms. The systematic review will be guided by the
procedure described in 2004 by Kitchenham [32].

The systematic literature review results were analyzed from the following points of view:

1. Journals publishing paper on binarized continuous metaheuristics.
2. Scientific production by country.
3. Combinatorial problems solved by the authors.
4. Continuous metaheuristics used to solve binary combinatorial problems.
5. Classification and definition of the different binarization techniques

A brief summary of the structure of the content of the following sections: Section 2
explains the procedure and methodology used to perform this systematic review. Section 3
presents the results extracted and analyzed. In Section 4 we answer our research questions
(presented in the methodology) and finally our conclusions in Section 5.

2. Methodology

This chapter is structured as follows, first, in Section 2.1, we identify the research
questions that this work intends to clarify; the research questions guide and create a strong
link of ideas that pivot on the main objective of the study. Next, in Section 2.2, the sources
or search engines used to extract results are defined, then the search terms to be used are
determined based on the summaries of some of the primary publications that are already
available. Once the results are obtained, an a priori analysis is made to show trends in
the results obtained. Then, exclusion and inclusion criteria are defined for the results in
Section 2.3, focusing on the content of the title, keywords, and abstract of the article. Finally,
each paper included in the review is assigned a score or value according to the scoring
criteria Section 2.4. The above process is represented in Figure 1. In the last Section 2.5, we
can find the data collected and used for our study and the presentation of the bigrams and
maps shown in the later sections.
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Figure 1. Systematic Literature Review Process Performed.

2.1. Research Questions

The first question from which the above-stated motivation of this study derives is: How
to make a complete picture of the research on binarization techniques solving combinatorial
problems in the binary domain? To answer it, we formulated two research questions (RQs)
to consider in the collected literature. These questions are:

RQ1 What continuous metaheuristics have been used from 2017 to date to solve binary
combinatorial problems?

RQ2 What techniques or forms of binarization have been used in metaheuristics from 2017
to date to solve binary combinatorial problems?

To address RQ-1, we identified the number of articles published per year, the jour-
nal/conference that published them, and whether they referred to continuous metaheuris-
tics to solve problems that belonged to a binary domain. Regarding RQ-2, we considered
the scope of the study, i.e., what techniques they used to transform a metaheuristic that
specializes in working with continuous domains to a binary domain.

2.2. Search Process

The search process was a search through queries in well-known search engines such
as Web of Science (Clarivate) and Scopus since 2017. It should be noted that only approved
scientific articles in digital format and written in English were considered for the review.

To answer the questions posed and find the articles that interest us, search terms (STs)
are used in the engines mentioned above:

ST1 (“binarization” OR “binary”)
ST2 (“optimization” OR “optimizer” OR “combinatorial” AND “problem*” OR “combina-

torial” AND “optimization”)
ST3 (“metaheuristic*” OR “continuous” AND “metaheuristic*”)

Using such search terms, we have elaborated in the sources the respective queries
subject to the dates Jan 1st, 2017 and Jan 30th, 2022.

QRY Scopus: ( TITLE-ABS-KEY ( binarization OR binary ) AND TITLE-ABS-KEY ( op-
timization OR optimizer OR combinatorial AND problem* OR combinatorial AND
optimization ) AND TITLE-ABS-KEY ( metaheuristic* OR continuous AND meta-
heuristic* ) )

QRY Web of Science: ALL=( binarization OR binary) AND ALL=(optimization OR opti-
mizer OR combinatorial AND problem* OR combinatorial AND optimization) AND
ALL=(metaheuristic* OR continuous AND metaheuristic*)

2.3. Inclusion and Exclusion Criteria

For the results obtained from Jan 1st, 2017, and Jan 30th, 2022, a first selection is
made, which consists of removing duplicates of the sum of both queries. Those articles that
are related to applications of continuous metaheuristics and solve binary combinatorial
problems are selected.

• Use of continuous metaheuristics.
• Solving binary domain combinatorial problems.
• Binarize a continuous metaheuristic.
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• Describes advances in the way of binarizing continuous metaheuristics.

Items excluded were for the following topics.

• Duplicate articles.
• Articles not related to metaheuristics.
• Articles other than English.

2.4. Quality Assessment

At the end of the selection and storage of articles, a second selection is made, which
consists of reading the title, abstract, and keywords and assigning a score concerning the
degree of usefulness of this study. This score is calculated by adding the score obtained in
each inclusion and exclusion criteria.

QA1 Are the authors using continuous metaheuristics?
QA2 Are the authors solving a binary domain combinatorial problem?
QA3 Do the authors binarize a continuous metaheuristic?
QA4 The authors describe advances in the binarization of continuous metaheuristics?

The scoring procedure corresponds to a binary evaluation, where Y = 1, N = 0. The
criteria are scored as follows:

QA1 : Yes, authors use a continuous metaheuristic; No authors do not make use of continu-
ous metaheuristics.

QA2 : Yes, authors solve at least 1 problem with binary domain; No, authors solve discrete
or continuous problems.

QA3 : Yes, the authors use techniques to binarize a continuous metaheuristic, that is, they
adapt the values of the real domain to binary to work with the binary problem: No,
the authors do not apply techniques to binarize the metaheuristic or they use one from
the literature and do not explain the procedure.

QA4 : Yes, the authors propose new or novel techniques to perform binarization and
transform continuous values to binary in a continuous metaheuristic: No, the authors
propose nothing and stick to more traditional techniques for binarization.

2.5. Data Collection

The data extracted from each article studied were:

• Full reference
• Quality evaluation
• Problem solved
• Metaheuristic used
• Transfer function used
• Categorization for the binarization technique used
• Year of publication
• Journal
• Cites by articles
• Authors’ countries

3. Results

In this section, a set of graphs presents the most relevant information about the selected
articles, such as the number of articles, the journals of origin and their respective countries, the
general concepts addressed, the quantification of the QA factors, and the popularity factors.

3.1. General and Bigrams Analysis

This section aims to conduct a general analysis of the metadata obtained from the
select articles. First, a visualization will be generated that identifies the journals or con-
ferences that are published the most in terms of binarizations of metaheuristics, and then
a visualization will be developed indicating the countries that have generated the most
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significant contribution in this area. This last graph considers the country of all the authors.
A bigram is a series of two contiguous elements of a chain of tokens, which correspond
to words in this instance. The purpose is to conduct a statistical analysis of the frequency
distribution of these bigrams in the various abstracts under consideration. The initial dis-
play represents the Treemap. This seeks to determine the frequency of the most prevalent
bigrams in each theme. The thematic map is then utilized; this graph combines the concepts
of density (internal associations) and centrality (external associations), [33,34]. Finally, the
visualization corresponds to conceptual maps and dendrograms. Conceptual structure
visualization creates a conceptual structure map. Specifically, the Correspondence Analysis
(CA) is performed on terms extracted from the summaries of the documents. In addition to
analyzing the relationship between the terms hierarchically, the conceptual structure is also
displayed through a dendrogram.

The main journals and conferences are shown in Figure 2. As can be seen from the
results, “advances in intelligent systems and computing together” with “IEEE Access” are
the ones that publish the most in the area. Subsequently, reading notes and communication
in computer and information science appear. All are generated by conferences except in
the case of IEEE Access. Figure 3 shows the main countries publishing in the binarization
area. The main country corresponds to Chile with 299 appearances, followed by China
with 183 appearances, and India with 143.

Figure 2. Most relevant journals.
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Figure 3. Scientific production by country.

When analyzing the Treemap Figure 4, three main concepts related to the techniques
used stand out. In the first place, transfer functions appear as a binarization method,
followed by machine learning techniques and, a little further down, techniques based
on the concept of percentile. From the point of view of the problems used to verify the
algorithms, the main problem corresponds to feature selection, followed by set-covering
and unit commitment problems. When reviewing the techniques, we see that they are all of
the swarm intelligence types where the most used corresponds to particle swarm, followed
by bat algorithm, bee colony, and grey wolf. When analyzing the thematic map Figure 5, it
is observed that a base theme, which has high centrality and low density, is related to the
use of transfer functions. These transfer functions are associated with different swarm-like
techniques. This can be seen in the lower right quadrant. On the other hand, the most
important topics, which correspond to the high centrality and high-density quadrant (upper
right quadrant), include machine learning techniques related to binarization and problems
such as set covering and knapsack, as well as percentile techniques related to local search
operators and swarm optimization techniques.

Finally, conceptual bigrams analysis, shown in Figure 6, returns two groups. In red,
there is a cluster that mainly relates binarization techniques and swarm-type metaheuristics.
Here, the transfer function and machine learning concepts stand out within the binarization
techniques. On the other hand, the cluster in blue is mainly related to binary problems,
among which set-covering and knapsack stand out.
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Figure 4. The most relevant bigrams, Treemap.

Figure 5. Clustering thematic bigrams analysis.

Figure 6. Conceptual bigrams analysis.
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3.2. Search Results

Table 1 summarizes the results obtained from the search process shown in Figure 1.
With the first search of the queries used, we obtained a total of 733 articles, from which it was
necessary to remove the existing duplicates, leaving a total of 512 qualifying articles. For our
second filter, we performed an analysis of the quality criteria defined in Section 2.4 based on
the title, keywords, and abstract presented by the research, leaving a total of 283 potentially
relevant articles for further analysis and to avoid false positives. From this list, we removed
papers in a language other than English, those where it was impossible to obtain access to
the article, and existing false positives. Finally, we obtained 195 unique studies.

Table 1. Sources searched for years 2017–2022 (including articles up to 30 January 2022).

Amount of Results

Used Query Sources Found Assessed
Selected for

In-Depth Analysis
Final Selectees

QRY1 405 396 212 132
QRY2 328 116 71 63

Total 733 512 283 195

3.3. Quality Evaluation of Articles

As mentioned above, the quality of the research obtained was evaluated using the
criteria defined in Section 2.4. The score of each article is present in Table 2, it is worth
mentioning, which contains the selected articles. The last column shows the score the
researchers agreed on; in this case, only those articles that achieved a score equal to or
greater than 3 points. All disagreements were discussed and resolved. Based on the number
of articles chosen, a total of 317 articles scored less than three or were discarded for the
reasons specified in Section 2.3.
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Table 2. Quality evaluation of articles.

Article QA1 QA2 QA3 QA4
Total
Score

Rater
Agreement

ID QA1 QA2 QA3 QA4
Total
Score

Rater
Agreement

ID QA1 QA2 QA3 QA4
Total
Score

Rater
Agreement

ID QA1 QA2 QA3 QA4
Total
Score

Rater
Agreement

A1 [35] Y Y Y Y 4 3 A51 [36] Y Y Y Y 4 3 A101 [37] Y Y Y N 3 3 A151 [38] Y Y Y N 3 3
A2 [39] Y Y Y Y 4 3 A52 [40] Y Y Y Y 4 3 A102 [41] Y Y Y N 3 3 A152 [42] Y Y Y N 3 3
A3 [43] Y Y Y N 3 3 A53 [44] Y Y Y Y 4 3 A103 [45] Y Y Y N 3 3 A153 [46] Y Y Y N 3 3
A4 [47] Y Y Y Y 4 3 A54 [48] Y Y Y Y 4 3 A104 [49] Y Y Y Y 4 3 A154 [50] Y Y Y N 3 3
A5 [51] Y Y Y N 3 3 A55 [52] Y Y Y Y 4 3 A105 [53] Y Y Y Y 4 3 A155 [54] Y Y Y N 3 3
A6 [55] Y Y Y Y 4 3 A56 [56] Y Y Y Y 4 3 A106 [57] Y Y Y N 3 3 A156 [58] Y Y Y N 3 3
A7 [59] Y Y Y Y 4 3 A57 [60] Y Y Y Y 4 3 A107 [61] Y Y Y Y 4 3 A157 [62] Y Y Y Y 4 3
A8 [2] Y Y Y Y 4 3 A58 [63] Y Y Y N 3 3 A108 [64] Y Y Y Y 4 3 A158 [65] Y Y Y Y 4 3
A9 [66] Y Y Y Y 4 3 A59 [67] Y Y Y Y 4 3 A109 [68] Y Y Y N 3 3 A159 [69] Y Y Y N 3 3
A10 [70] Y Y Y N 3 3 A60 [71] Y Y Y N 3 3 A110 [72] Y Y Y N 3 3 A160 [73] Y Y Y Y 4 3
A11 [74] Y Y Y Y 4 3 A61 [75] Y Y Y N 3 3 A111 [76] Y Y Y N 3 3 A161 [77] Y Y Y N 3 3
A12 [78] Y Y Y N 3 3 A62 [79] Y Y Y Y 4 3 A112 [80] Y Y Y N 3 3 A162 [81] Y Y Y Y 4 3
A13 [82] Y Y Y N 3 3 A63 [3] Y Y Y N 3 3 A113 [83] Y Y Y Y 4 3 A163 [84] Y Y Y Y 4 3
A14 [85] Y Y Y Y 4 3 A64 [86] Y Y Y N 3 3 A114 [87] Y Y Y N 3 3 A164 [12] Y Y Y N 3 3
A15 [88] Y Y Y Y 4 3 A65 [89] Y Y Y N 3 3 A115 [90] Y Y Y N 3 3 A165 [91] Y Y Y N 3 3
A16 [92] Y Y Y Y 4 3 A66 [93] Y Y Y N 3 3 A116 [94] Y Y Y N 3 3 A166 [95] Y Y Y N 3 3
A17 [96] Y Y Y N 3 3 A67 [97] Y Y Y N 3 3 A117 [98] Y Y Y N 3 3 A167 [99] Y Y Y Y 4 3
A18 [100] Y Y Y N 3 3 A68 [101] Y Y Y N 3 3 A118 [102] Y Y Y N 3 3 A168 [103] Y Y Y N 3 3
A19 [104] Y Y Y Y 4 3 A69 [105] Y Y Y Y 4 3 A119 [106] Y Y Y N 3 3 A169 [107] Y Y Y N 3 3
A20 [31] Y Y Y Y 4 3 A70 [108] Y Y Y N 3 3 A120 [109] Y Y Y N 3 3 A170 [110] Y Y Y N 3 3
A21 [111] Y Y Y N 3 3 A71 [112] Y Y Y Y 4 3 A121 [113] Y Y Y N 3 3 A171 [114] Y Y Y N 3 3
A22 [115] Y Y Y Y 4 3 A72 [116] Y Y Y N 3 3 A122 [117] Y Y Y N 3 3 A172 [118] Y Y Y Y 4 3
A23 [119] Y Y Y N 3 3 A73 [120] Y Y Y N 3 3 A123 [121] Y Y Y N 3 3 A173 [122] Y Y Y N 3 3
A24 [123] Y Y Y Y 4 3 A74 [124] Y Y Y Y 4 3 A124 [125] Y Y Y N 3 3 A174 [126] Y Y Y N 3 3
A25 [127] Y Y Y N 3 3 A75 [128] Y Y Y N 3 3 A125 [129] Y Y Y Y 4 3 A175 [130] Y Y Y N 3 3
A26 [131] Y Y Y N 3 3 A76 [132] Y Y Y N 3 3 A126 [133] Y Y Y Y 4 3 A176 [134] Y Y Y N 3 3
A27 [135] Y Y Y N 3 3 A77 [136] Y Y Y N 3 3 A127 [137] Y Y Y Y 4 3 A177 [138] Y Y Y N 3 3
A28 [139] Y Y Y N 3 3 A78 [140] Y Y Y N 3 3 A128 [141] Y Y Y Y 4 3 A178 [142] Y Y Y N 3 3
A29 [143] Y Y Y N 3 3 A79 [144] Y Y Y N 3 3 A129 [145] Y Y Y Y 4 3 A179 [146] Y Y Y N 3 3
A30 [147] Y Y Y N 3 3 A80 [148] Y Y Y N 3 3 A130 [149] Y Y Y N 3 3 A180 [150] Y Y Y N 3 3
A31 [151] Y Y Y N 3 3 A81 [152] Y Y Y N 3 3 A131 [153] Y Y Y Y 4 3 A181 [5] Y Y Y Y 4 3
A32 [154] Y Y Y N 3 3 A82 [155] Y Y Y N 3 3 A132 [156] Y Y Y Y 4 3 A182 [157] Y Y Y N 3 3
A33 [158] Y Y Y Y 4 3 A83 [159] Y Y Y N 3 3 A133 [160] Y Y Y Y 4 3 A183 [161] Y Y Y N 3 3
A34 [162] Y Y Y N 3 3 A84 [163] Y Y Y N 3 3 A134 [164] Y Y Y Y 4 3 A184 [165] Y Y Y Y 4 3
A35 [166] Y Y Y N 3 3 A85 [167] Y Y Y N 3 3 A135 [168] Y Y Y N 3 3 A185 [169] Y Y Y Y 4 3
A36 [170] Y Y Y Y 4 3 A86 [171] Y Y Y N 3 3 A136 [172] Y Y Y Y 4 3 A186 [10] Y Y Y Y 4 3
A37 [173] Y Y Y N 3 3 A87 [174] N Y Y Y 3 3 A137 [175] Y N Y Y 3 3 A187 [176] Y Y Y Y 4 3
A38 [177] Y Y Y N 3 3 A88 [178] Y Y Y N 3 3 A138 [179] Y Y Y Y 4 3 A188 [180] Y Y Y Y 4 3
A39 [181] Y Y Y N 3 3 A89 [182] Y Y Y N 3 3 A139 [183] Y Y Y Y 4 3 A189 [184] Y Y Y Y 4 3
A40 [185] Y Y Y N 3 3 A90 [186] Y Y Y N 3 3 A140 [187] Y Y Y N 3 3 A190 [188] Y Y Y Y 4 3
A41 [189] Y Y Y Y 4 3 A91 [190] Y Y Y N 3 3 A141 [191] Y Y Y N 3 3 A191 [192] Y Y Y Y 4 3
A42 [193] Y Y Y N 3 3 A92 [194] Y Y Y N 3 3 A142 [195] Y Y Y Y 4 3 A192 [196] Y Y Y Y 4 3
A43 [197] Y Y Y N 3 3 A93 [198] Y Y Y Y 4 3 A143 [199] Y Y Y Y 4 3 A193 [200] Y Y Y Y 4 3
A44 [201] Y Y Y N 3 3 A94 [202] Y Y Y N 3 3 A144 [203] Y Y Y Y 4 3 A194 [204] Y N Y Y 3 3
A45 [205] Y Y Y N 3 3 A95 [206] Y Y Y N 3 3 A145 [207] Y Y Y Y 4 3 A195 [208] Y Y Y Y 4 3
A46 [209] Y Y Y N 3 3 A96 [210] Y Y Y N 3 3 A146 [211] Y Y Y Y 4 3
A47 [212] Y Y Y N 3 3 A97 [213] Y Y Y N 3 3 A147 [214] Y Y Y N 3 3
A48 [14] Y Y Y N 3 3 A98 [215] Y Y Y Y 4 3 A148 [216] Y Y Y N 3 3
A49 [217] Y Y Y Y 4 3 A99 [218] Y Y Y N 3 3 A149 [219] Y Y Y N 3 3
A50 [220] Y Y Y Y 4 3 A100 [221] Y Y Y N 3 3 A150 [7] Y Y Y N 3 3
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3.4. Quality Factors

The relationship between the quality score of a selected article and the date of publi-
cation of the article was investigated. The mean quality scores obtained from the studies
in each year are shown in Table 3. According to this table, we can observe that there is an
increasing trend in the use of continuous metaheuristics to solve problems in the binary
domain, although in 2022, there are only 16 articles, it is necessary to remember that for
this year, only the month of January was considered. Based on the trend, we can assume
that there will be more articles by the end of the year than in 2021.

Table 3. Average quality scores for articles by publication date.

Year

2017 2018 2019 2020 2021 2022 Total

Number of articles 15 22 33 53 56 16 195

Mean quality score 3.5 3.38 3.27 3.6 3.42 3.24

3.5. Popularity Factors

To facilitate the reading of the metaheuristics, Table 4 has been created with the ID
of each of the metaheuristics that were used in the respective works. On the other hand,
the composition of the next tables is as follows: the first column indicates what we are
analyzing (metaheuristics, problems, binarization technique used or transfer function), the
next five columns correspond to the years that were considered in the study, from 2017 to
2021 (without considering the single month of January 2022, this way we avoid confusion
with the values) and finally the last column corresponds to the total value of articles.

As well as quality, the relationship between the popularity of the problems, meta-
heuristics, binarization techniques, and transfer functions used in a selected article and the
date of publication was investigated. According to Table 5, we can notice that the problems
with more tendency to solve are Feature Selection, Set Covering Problem, and Knapsack
Problem, while with Table 6 with the course of the years there is a tendency to use less
conventional metaheuristics, as it is Particle Swarm Optimization or Cuckoo Search. The
most popular techniques shown in Table 7 give indications that the most traditional is to
use a simple transformation, which usually consists of two steps, going from continuous
to discrete and then by means of an equation to binary, finally, the most popular transfer
functions in the literature during the last five years, the most classical ones such as S and V
type are maintained, however, there are some adventurous in using other less conventional
ones as can be seen in the Table 8.
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Table 4. Acronyms of the investigated metaheuristics.

ID Metaheuristic ID Metaheuristic

AAA Artificial Algae Algorithm HOA Horse Herd Optimization Algorithm
ABC Artificial Bee Colony Algorithm JAYA JAYA
AFSA Artificial Fish Swarm Optimization Algorithm LSA Lightning Search Algorithm
ALO Ant Lion Optimization MA Monkey Search Algorithm
ASA Artificial Sheep Algorithm MAMH Multi-Agent System as Metaheuristic
ASO Atom Search Optimization MFO Moth-Flame Optimization
BA Bat Algorithm MOA Magnetic Optimization Algorithm
BHO Black Hole Optimization Algorithm MRFO Manta Ray Foraging Optimization Algorithm
BO Bonobo Optimizer MS Moth Search
BSO Brain Storm Optimization MVO Multi-verse Optimazer Algorithm
ChOA Chimp Optimization Algorithm OSA Owl Search Algorithm
COA Coyote Optimization Algorithm PBO Polar Bear Optimization Algorithm
CS Cuckoo Search PIO Pigeon-Inspired Optimization Algorithm
CSA Crow Search Algorithm PO Political Optimizer
CSO Cat Swarm Optimization PSO Particle Swarm Optimization
DA Dragonfly Algorithm RA Rao Algorithm
DE Differential Evolution RFSO Red Fox Search Optimizer
EM Electromagnetism-like Algorithm SCA Sine Cosine Algorithm
EO Equilibrium Optimizer Algorithm SFO Sail Fish Optimization
EPO Emperor Penguin Optimizer SHO Spotted Hyena Optimizer
EVOA Egyptian Vulture Optimization Algorithm SMA Slime Mould Algorithm
FA Firefly Algorithm SMO Spider Mokey Optimization
FMO Fish Migration Optimization SOA Seagull Optimization Algorithm
FOA Fruit Fly Optimization SOS Symbiotic Organism Search Algorithm
GBO Gradient-Based Optimizer SSA Social Spider Algorithm
GEO Golden Eagle Optimizer SSA* Salp Swarm Algorithm
Q GOA Grasshopper Optimization Algorithm TGA Tree Growth Algorithm
GPC Giza Pyramids Construction Algorithm TLBO Teaching-Learning-Based Optimization Algorithm
GSA Gravitational Search Algorithm WDO Wind Driven Optimization Algorithm
GSK Gaining-Sharing Knowledge-Based Optimization Algorithm WOA Whale Algorithm Optimization
GSO Galactic Swarm ptimization WSA Weighted Superposition Attraction Algorithm
GWO Grey Wolf Optimizer WSA* Wolf Search Algorithm
HGS Hunger Games Search Optimization WWO Water Wave Optimization Algorithm
HHO Harris Hawk Optimization β HO β -Hill Climbing Optimizer
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Table 5. Problem per year.

Problem 2017 2018 2019 2020 2021 Total

Feature Selection 3 [42,95,122] 7 [161,162,165,166,
177,213,222]

7 [46,76,101,111,
114,136,147]

23 [38,54,74,80,
103,108,116,119,
125,132,134,135,
152,157,173,180,
185,187,189,194,
196,217,223]

25 [7,36,39,45,
50,57,69,78,90,
110,126,127,138,
140,171,174,190–
192,200,206,214,
216,224,225]

65

Set Covering Problem 3 [44,53,55] 2 [105,182] 4 [83,168,183,199] 8 [56,61,153,164,
198,215,218,220]

11 [48,60,79,85,
104,137,145,170,
195,226,227]

28

Knapsack Problem 3 [37,52,121] 1 [98] 6 [49,62,118,124,
197,228]

5 [35,66,74,99,220] 7 [39,65,203,229–
232]

22

Multidimensional Knapsack Problem - 2 [112,160] 1 [149] 7 [74,94,156,158,
172,179,209]

4 [75,133,141,176] 14

Unit Commitment 1 [43] - 3 [93,178,207] 2 [41,97] 3 [148,151,221] 9
Classic Benchmark Function 1 [175] - 2 [93,233] 3 [115,234,235] 1 [236] 7
Uncapacitated Facility Location Problem - 1 [51] 1 [197] 1 [123] 1 [210] 4
Set Union Knapsack Problem - 1 [237] - 1 [123] 1 [64] 3
Buttressed Walls Problem - - - 3 [10,188,211] - 3
Binary Benchmarks Problems - 1 [205] 2 [128,238] - - 3
Gene Selection Problem - - 1 [12] - 1 [91] 2
Manufacturing Cell Design Problem 1 [59] - 1 [2] - - 2
Crew Scheduling Problem - 1 [73] 1 [183] - - 2
Security Audit Trails Analysis Problem - 1 [186] 1 [102] - - 2
GNSS/Leveling points - - - - 1 [169] 1
Hardware/Software Partitioning Problem - - - - 1 [129] 1
Next Release Problem - - - - 1 [72] 1
Scheduling Problem in Code-Base Computing - - - - 1 [113] 1
Support Vector Classification - - - - 1 [109] 1
Synthetic, Real Life and Higher-dimensional Datasets - - - - 1 [40] 1
Workflow Scheduling - - - - 1 [131] 1
Classification of Complex Diseases - - - 1 [71] - 1
Design of Micro-Grooved Pipe - - - 1 [142] - 1
Structural Topology Design Optimization - - - 1 [47] - 1
Susceptible-Exposed-Infectious Vigilant Epidemic Model - - - 1 [14] - 1
Transmission Expansion Planning Considering - - - 1 [143] - 1
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Table 5. Cont.

Problem 2017 2018 2019 2020 2021 Total

Welded Beam Design Problem - - - 1 [115] - 1
Tension/Compression Design Problem - - - 1 [115] - 1
Two-dimensional Bin Packing Problem - - - 1 [81] - 1
Advertisement Problem - - 1 [159] - - 1
Brain Tumors Diagnosis and Prediction Based - - 1 [3] - - 1
Constrained Multiobjective Next Release Problem - - 1 [154] - - 1
Distribution Network Reconfiguration with Large Num-
ber of Switches

- - 1 [212] - - 1

High Dimensional of Colon and Leukemia Datasets - - 1 [63] - - 1
Load Restoration in Primary Distribution Networks - - 1 [100] - - 1
Mesh-based Network-on-chip - - 1 [89] - - 1
Optimal Scheduling of Appliances in Smart Home - - 1 [120] - - 1
Binary Cutting Stock - 1 [70] - - - 1
Computationally Efficient Electronic Nose System - 1 [96] - - - 1
Cryptanalysis - 1 [155] - - - 1
Fault Section Diagnosis of Power Systems - 1 [84] - - - 1
Obnoxious p-median Problem - 1 [106] - - - 1
Planning and Allocation Problem - 1 [181] - - - 1
Antenna Positioning Problem 1 [5] - - - - 1
Unconstrained Binary Quadratic Programming 1 [117] - - - - 1
Compact Dual-Band Planar Monopole Antenna Design - - - - 1 [230] 1
Electrocardiogram Arrhythmia Classification - - - - 1 [7] 1
Electrocardiogram Signal Classification - - 1 [46] - - 1
Distribution System - - - - 1 [130] 1
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Table 6. Metaheuristic per year.

Metaheuristic 2017 2018 2019 2020 2021 Total

PSO 1 [52] 10 [70,96,106,155,161,162,177,181,205,208] 10 [3,12,89,100,120,146,154,183,204,207] 11 [14,41,134,142,143,158,179,209,211,234,235] 9 [39,40,69,130,138,191,214,232,236] 41
BA 1 [5] 1 [186] 5 [63,102,147,212,228] 6 [47,99,103,164,172,215] 3 [40,219,230] 16
CS 1 [55] 3 [73,105,112] 3 [178,183,199] 5 [10,71,158,179,196] 3 [48,64,176] 15
WOA - - 2 [93,238] 4 [38,97,115,185] 7 [60,85,104,133,137,203,225] 13
GWO - - 2 [63,197] 3 [56,123,185] 8 [109,110,126,131,169,170,214,227] 13
FA 2 [59,92] 1 [205] 1 [111] 1 [217] 5 [65,79,129,141,145] 10
SCA - - 2 [49,89] 1 [119] 4 [104,195,226,227] 7
HHO - - 1 [76] 1 [189] 5 [36,126,127,206,227] 7
GSA 1 [42] 2 [165,177] 3 [63,122,146] 1 [198] - 7
GOA - - 3 [62,83,136] 2 [153,156] 2 [151,216] 7
ABC - 1 [98] 2 [159,204] 1 [187] 2 [39,210] 6
BHO 1 [55] 1 [160] - 1 [188] 2 [91] 5
DA - 1 [222] - - 4 [40,91,229,231] 5
ALO 1 [117] - 2 [118,168] 1 [119] - 4
CSA - 1 [213] - 4 [81,157,220] - 4
CSO 1 [44] 1 [155] 1 [2] 1 [74] - 4
MVO 1 [53] - 2 [124,149] 1 [54] - 4
GSK - - - - 2 [57,192] 2
WSA - 1 [205] - 1 [35] - 2
JAYA - - - 1 [132] 1 [113] 2
MA - 1 [51] - 1 [61] - 2
MRFO - - - - 2 [7,78] 2
PIO - - 1 [128] 1 [94] - 2
SMO - - 1 [114] 1 [223] - 2
SSA* - - 1 [233] - 1 [200] 2
BSO - 2 [84,166] - - - 2
AAA - - - - 1 [72] 1
EO - - - 1 [194] - 1
EPO - - - - 1 [50] 1
GBO - - - - 1 [190] 1
DE - - - 1 [142] - 1
ASA 1 [43] - - - - 1
ASO - - - 1 [180] - 1
COA - - - 1 [152] - 1
EM - 1 [182] - - - 1
EVOA 1 [59] - - - - 1
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Table 6. Cont.

Metaheuristic 2017 2018 2019 2020 2021 Total

TGA - - - 1 [173] - 1
FMO - - - - 1 [148] 1
FOA 1 [121] - - - - 1
GPC - - - - 1 [140] 1
GSO - - - 1 [66] - 1
LSA 1 [175] - - - - 1
MAMH - - - - 1 [90] 1
MFO - - - - 1 [171] 1
MOA - - 1 [46] - - 1
MS - 1 [237] - - - 1
OSA - - - 1 [80] - 1
PBO - - - - 1 [221] 1
PO - - - 1 [116] - 1
AFSA - - 1 [204] - - 1
RA - - - - 1 [224] 1
SFO - - - 1 [135] - 1
SMA - - - - 1 [75] 1
SOA - - - - 1 [45] 1
SOS - - 1 [101] - - 1
SPO - - - 1 [108] - 1
SSA 1 [37] - - - - 1
TLBO - - - 1 [218] - 1
WSA* 1 [95] - - - - 1
WWO - - - 1 [125] - 1
βHO - - - - 1 [174] 1
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Table 7. Technique of Binarization per year.

Technique of Binarization 2017 2018 2019 2020 2021 Total

Simple Transformation 11 [5,31,37,43,44,
52,55,59,92,122,
175]

16 [70,96,106,155,
161,162,165,166,
177,181,182,186,
205,213,222,237]

26 [2,3,12,46,
63,76,89,93,100–
102,111,120,136,
146,147,149,154,
159,178,197,207,
212,228,233,238]

32 [14,41,47,54,61,
71,74,81,97,103,
108,115,116,119,
132,134,135,142,
143,152,157,180,
185,187,189,194,
217,218,220,223,
234,235]

39 [36,39,45,50,57,
69,75,78,90,91,109,
113,126,127,130,
131,138,140,148,
151,171,174,190–
192,200,206,210,
214,216,219,221,
224,225,229–
232,236]

123

Encoding Transformation 4 [42,95,117,121] 5 [51,84,165,205,
208]

6 [63,93,114,128,
159,204]

9 [35,80,94,125,
173,188,194,196,
209]

5 [40,72,110,169,
219]

29

Machine Learning Structure - 2 [73,160] 2 [183,199] 11 [10,56,66,153,
156,158,164,172,
179,211,220]

13 [48,64,85,104,
133,137,141,145,
170,176,195,226,
227]

28

Percentile Concept 1 [53] 2 [105,112] 6 [49,62,83,118,
124,168]

3 [99,198,215] 4 [60,65,79,203] 16

Crossover - 1 [98] 2 [136,159] 2 [38,123] 4 [7,129,192,219] 9
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Table 8. Transfer Function per year.

Transfer Function 2017 2018 2019 2020 2021 Total

S-Shaped 7 [5,31,37,43,44,55,
92]

13 [70,96,106,155,
161,162,165,166,
177,181,205,222,
237]

20 [2,3,12,63,76,
89,93,100,101,111,
120,136,146,147,
154,159,178,197,
233,238]

26 [14,54,56,61,71,
74,81,97,103,115,
116,119,132,134,
135,142,143,157,
180,185,187,189,
194,218,220,234]

32 [39,45,50,69,75,
78,85,90,104,109,
126,127,130,131,
138,140,148,151,
170,171,174,190–
192,195,214,216,
219,221,224,226,
227]

98

V-Shaped 6 [31,44,55,59,92,
175]

7 [63,165,177,182,
186,213,237]

12 [12,46,76,102,
111,120,122,136,
149,207,212,233]

20 [41,47,54,56,93,
103,108,115,116,
119,146,152,180,
189,194,195,217,
218,220,234]

20 [39,45,50,74,75,
78,85,91,104,113,
131,140,148,170,
171,190,219,224,
226,227]

65

U-Shaped - - - 1 [235] 3 [39,75,171] 4
O-Shaped - 2 [205,237] - - 2 [39,210] 4
Q-Shaped - - 2 [76,120] - 2 [200,206] 4
S-Shaped Time Varying 1 [52] 1 [222] - - 1 [225] 3
V-Shaped Time Varying 1 [52] 1 [222] - - 1 [36] 3
X-Shaped - - - 1 [223] 1 [236] 2
Z-Shaped - - - 1 [234] 1 [232] 2
Lineal - - - - 1 [39] 1
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4. Discussion

In this section, we will discuss the answers to our research questions.

4.1. What Continuous Metaheuristics Have Been Used from 2017 to Date to Solve Binary
Combinatorial Problems?

In general, as mentioned in the previous section, we found a total of 195 out of
512 relevant articles in the sources we searched, a little more than 50% of the articles use
continuous metaheuristics to solve binary combinatorial problems, this gives us good
indications as they present good indicators that continuous metaheuristics give good
results when solving problems of different binary nature. Of the total number of articles,
researchers opted for more traditional metaheuristics (PSO, BA, and CS) while the rest
decided to use less conventional metaheuristics (see Table 4 or Table 6).

4.2. What Techniques or Forms of Binarization Have Been Used in Metaheuristics from 2017 to
Date to Solve Binary Combinatorial Problems?

Analyzing the results obtained, a classification of binarization techniques was made
based on how they perform the binarization process to answer this question. They were
classified into five categories, which are “Simple Transformation,” “Encoding Transfor-
mation,” “Machine Learning Structure,” “Percentile Concept,” and “Crossover.” Table 7
shows the number of times each category was used in each year. Next, we will proceed to
define and exemplify each of the five categories mentioned above.

4.2.1. Simple Transformation

In the literature, our categorization of Simple Transformation corresponds to a gener-
ally sequential mechanism; this transformation works with continuous operators without
modifying them. We say it is sequential because the first step fits the introduction of
operators that transform the solution of Rn into {InterSpace}. For example, in Great
Value Priority, our interspace is Zn; in the case of a transfer function, we have [0, 1]n and
{InterSpace Functions} in the Angular Modulation. The second step is to transform from
the intermediate space (Zn, [0, 1]n, {InterSpace Functions}) into a binary space {0, 1}n. See
Figure 7 for a better overview of the general scheme. Within our category, we can find
several techniques that follow these principles, which we will detail below.

Figure 7. Simple Transformation − Sequential Scheme.

• Transfer Function and Binarization

The first step of this technique corresponds to the use of transfer functions, the most
common normalization method and which was introduced in [239], the advantage of the
transfer function is that it is a very cheap operator, providing a range of probabilities and
attempts to model the transition of the particle position. These functions are responsible
for the first step of the binarization method and for mapping the Rn solutions into [0, 1]n.

In our review, we found the use of different transfer functions: the S-shaped [88,163,167,
202], V-shaped [68,82,144,201], U-shaped [184], O-shaped [205,237], Q-shaped [76,120,200,206],
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X-shaped [223,236], Z-shaped [232,234], S-shaped time-varying [52,67,222,225], V-shaped time-
varying [36,52,222] and finally the authors in [39] used one called Linear.

The second step is to use a binarization rule, where the particle is transformed into a
binary solution. In this review we could identify that a large percentage of the articles used
standard (see Equation (1)), however, there are other rules, for example, in [31] four more
are mentioned, static probability, elitist, elitist roulette [240,241], and finally complement
the technique also used in [46,122]. The four mentioned techniques can be seen in Table 9.

Standard

{

1 i f random ≤ T(d
j
w)

0 otherwise.
(1)

Table 9. Binarization Functions.

Type Binarization

Complement bj
new =

{

complement(b
j
w) i f rand ≤ T(d

j
w)

0 otherwise.

Static
Probability

bj
new =











0 i f T(d
j
w) ≤ α

b
j
w i f α < T(d

j
w) ≤

1
2 (1 + α)

1 i f T(d
j
w) ≥

1
2 (1 + α)

Elitist bj
new =

{

b
j
Best i f rand < T(d

j
w)

0 else.

Elitist
Roulette

bj
new =







P[b
j
new = ζ j] =

f (ζ)
∑δ∈Qg f (δ)

if rand ≤ T(d
j
w)

P[b
j
new = 0] = 1 else.

• Angle Modulation

This approach is used in the telecommunications industry for carrier modulation
of the [242] signal and uses trigonometric functions with four parameters capable of
controlling the frequency and offset of the function itself.

gi(xj) = sin(2π(xj − ai)bi · cos(2π(xj − ai)ci)) + di (2)

Let us consider X = {x1, x2, ..., xn} a solution of an n−dimensional binary problem.
We will start with a 4-dimensional search space, where each of these dimensions represents
a coefficient of Equation (2). Considering this search space, the first step is to obtain
a function in a function space, namely from each solution represented in the space as
(ai, bi, ci, di). Then we obtain a trigonometric function gi that lies in a function space.

For the second step, for each of the xj elements present in X, we apply a binarization
rule (see Equation (3)) and obtain an n−dimensional binary solution.

bi,j =

{

1 i f gi(xj) ≥ 0
0 otherwise

(3)

In this way, for each initial solution, remembering (ai, bi, ci, di), we will obtain an
n−dimensional binary solution: (bi,1, bi,2, ..., bi,n). In this review, we were able to find some
papers that applied this technique, such as [228–231].

• Binarization Conversion

There are some works where the authors did not apply any traditional way as men-
tioned above. Failing that, these authors in their research indicate that they obtain the
value of their particle and then randomly apply binarization. In [57,150] they update
the population with the following Eq. x0

tk = round(rand(0, 1)) and in [77,139] they use
Equation (4).
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(xt
i )bin =

{

1 i f xt
i > 0.5

0 Otherwise
(4)

4.2.2. Encoding Transformation

Unlike the previous category, these methods classified as encoding are characterized
by redefining the metaheuristic operators; we can identify two main groups. The first
are those that modify the operations of the search space through modified algebraic or
logical operations. The second group can be referred to as promising regions, and the
operators, this time, are restructured based on the promising regions that were selected in
the search space. The Quantum binary approach is an example of this group we found in
the analyzed articles.

• Algebraic or Logic Operations

This method transforms real operators into binary or logical operators. This transfor-
mation is performed by Boolean operations, which causes the operators to be able to act on
the binary solutions. This approach was proposed as a binarization technique in PSO [243].

The Boolean notation or also known as logic gates are as follows: “XOR” =
⊗

, “AND”
=

⊕

and “OR” =
⊙

. Equations (5) and (6) present the Boolean equations for velocity
and position.

Vi(t + 1) = w ⊕ Vi(t)⊙ c1 ⊗ (Pbest,i ⊕ Xi)⊙ c2 ⊗ (Pglobal ⊕ Xi) (5)

Xi(t + 1) = Xi(t)⊕ Vi(t + 1) (6)

where Vi(t) and Xi are the representation of the velocity at time t and the particle position,
c1 and c2 are random vectors. Pbest,i is the best position selected by the particle and Pglobal

corresponds to the position of the best global solution.
This method has been used in the application in different binary optimization prob-

lems using GSK [107], PSO [40,86], BSO [84], TGA [173], BA [40,63], GWO [63], GSA [63],
ABC [159], DA [40], SMO [114], BHO [188] and CS [196].

• Quantum Binary Approach

This approach is inspired by the uncertainty principle, where we cannot simulta-
neously determine position and velocity. Therefore, the PSO algorithm works differ-
ently for individual particles, and we need to rewrite the operators. In the quantum
approach, each feasible solution has a position X = {x1, x2, ..., xn} and a quantum vector
Q = [Q1, Q2, ..., Qn]. The quantum vector Qj represents the probability that xj takes the
value 1. For each dimension j, a random number between [0, 1] is generated and compared
to Qj (see Equation (7)).

xj =

{

1 i f rand < Qj

0 otherwise
(7)

After obtaining the binary values of the solutions, the new Pbest and Pglobal are cal-
culated using the objective function. Finally, the transition probability is updated using
Equation (8).

Q(t + 1) = C1 · Q(t) + C2 · Qsel f (t) + C3 · Qglobal(t) (8)

where Qsel f and Qglobal are calculated with Equations (9) and (10) respectively.

Qsel f (t) = αPbest(t) + β(1 − Pbest) (9)

Qsocial(t) = αPglobal(t) + β(1 − Pglobal) (10)
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The quantum method has been applied to various problems such as Multidimensional
Knapsack Problem with PSO [209], Next Release Problem con AAA [72], Feature Selection
con OSA [80], GSA [42]. In [208], they apply this method to binarize PSO, while in [204]
apart from PSO, also in ABC, AFSA.

4.2.3. Percentile Concept

This approach using percentile operators works directly with the own parameters of
each metaheuristic ∆(x) (see Equation (11)), i.e., the binary percentile operator considers the
displacements generated by the metaheuristic in each dimension for each of the particles.

x(t + 1) = x(t) + ∆t+1(x(t)) (11)

The parameter ∆i(x) is the magnitude of the displacement ∆(x) at the i-th position
for the particle x; subsequently, these displacements are grouped using the magnitude of
the displacement (∆i(x)) and an assigned percentile list. The binary percentile operator
will have as input the parameters of the percentile list; suppose Pr = {20, 40, 60, 80, 100}
and a list of values. Given an iteration, the list of values corresponds to the magnitude of
the displacement ∆i(x) of the particles in each dimension. As a first step, the percentile
operator uses the value list and obtains the given percentile values in Pr. Subsequently,
each value in the value list is assigned the smallest percentile group to which it belongs.
Finally, the list of the percentile to which each value belongs is obtained and assigned a
transition probability by Equation (12).

Ptr =

{

0.1 i f xi ∈ group{0, 1}
0.5 i f xi ∈ group{2, 3, 4}

(12)

The concept of percentiles has been applied to the classical Knapsack Problem and the
Set Covering Problem in several articles with binary versions of ALO [118,168], BA [99,215],
FA [65,79], GOA [62,83], SCA [49], WOA [60,203], MVO [53,124], GSA [198]. CS has also
been applied in the Multidimensional Knapsack Problem [112] and in the Set Covering
Problem [105].

4.2.4. Machine Learning Structure

This approach uses the great virtues of machine learning techniques to binarize. Ma-
chine Learning techniques have taken great prominence in recent years thanks to great
technological advances, which allow us to have a great computational capacity. Machine
learning techniques are classified into three groups, Supervised Learning, Unsupervised
Learning, and Reinforcement Learning [244–246]. In the present analysis, the use of algo-
rithms belonging to the groups of Unsupervised Learning and Reinforcement Learning
was detected.

• Unsupervised Learning

In unsupervised learning, the output data is unknown from the beginning. The
learning lies in recognizing patterns in the input data. This type of learning is also known
as clustering learning.

The algorithms used to binarize by clustering are K-Means [64,133,137,141] and Db-
Scan [66,179,183,211]. Were applied to binarize CS, PSO, BA, BHO, GOA, FA, WOA, CSA,
GSO para resolver Buttressed Walls Problem, Multidimensional Knapsack Problem, Set
Covering Problem, Crew Scheduling Problem, and Set Union Knapsack Problem.

• Reinforcement Learning

Reinforcement Learning consists of finding the best action to be taken by an agent
in a given state. The performance of the action is judged through a reward. Therefore,
Reinforcement Learning algorithms seek to maximize this reward accumulated over time.

In Section 4.2.1 we mentioned two-step techniques, a technique that combines a
transfer function and a binarization function to binarize continuous solutions. To find the
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best combination of functions it is necessary to test them all, which is very time-consuming.
To solve this, reinforced learning techniques are incorporated.

In [85,104,170,195] they use Q-Learning and in [85,227,247] they use SARSA as intel-
ligent selectors of binarization schemes. These two techniques were applied to binarize
GWO, HHO, SCA, and WOA to solve Set Covering Problem.

4.2.5. Crossover

Within the population metaheuristics, we have a group called Evolutionary Algo-
rithms [248], which uses evolutionary theory to perturb the solutions. The operations used
to perturb the solutions are crossover and mutation, where the most common algorithms
within this group of metaheuristics are Genetic Algorithm (GA) and Differential Evolution
(DE). Different proposals such as [7,88,129,219] use a continuous metaheuristic hybridized
with an evolutionary algorithm to perturb the solutions.

The optimization process consists of initializing the solutions in a binary way to the
metaheuristic, using its movement patterns in conjunction with the evolutionary algorithms
to obtain binary perturbed solutions.

4.3. Closing of Discussions

Because of what has been presented and summarizing the answers proposed in
Sections 4.1 and 4.2, it is clarified that the most used metaheuristics are those based on
the swarm, since these have recently gained remarkable popularity, both for their good
performance and their ease of implementation, both in continuous and discrete domains
using the aforementioned techniques. Along with this, it is emphasized what was already
indicated in the predecessor of this work, where the techniques or forms of binarization
where the most used are the Simple Transformation or in other words, those that are
sequential. But together with ratifying what was previously investigated, new alternatives
of binarization are presented, such as Percentile Concept or Machine Learning Structure
there are also novel transfer functions or hybridizations called in this work as crossovers,
which present new and novel techniques or forms of binarization, enriching the options to
be used to be able to operate with continuous metaheuristics in binary space.

5. Conclusions

This study investigated and compiled important binarization methods of continuous
metaheuristics. Within our obtained conglomerate of binarization, we propose five main
classifications; in Table 7, these groups are shown. The first group we call Simple Transfor-
mation sequential binarization mechanisms, which use an intermediate space from which
the binarization is mapped. The second group we call Encoding Transformation, where
the metaheuristic operator is adapted to a binary problem; by analyzing this adaptation
of operators, we could find methods that transform algebraic operations and methods
that use a probability to make the transition in the search space. The third group is called
Percentile Concept and is based on statistics using percentile groups to the values obtained
in the solutions. The fourth group was assigned the name Machine Learning Structure and,
as its name indicates, incorporates machine learning techniques for binarization. In the
review, two different groups were detected, Unsupervised Learning and Reinforcement
Learning. On the Unsupervised Learning side, the authors used clustering techniques such
as K-Means and DbScan to binarize. On the Reinforcement Learning side, the authors used
Q-Learning and SARSA as intelligent selectors of binarization schemes coming from the
two-step technique. The fifth group we call Crossover because continuous metaheuristics
are hybridized with evolutionary algorithms to use operators such as Crossover to obtain
perturbed binarization solutions.

In addition, we investigated which specific metaheuristics use these binarization tech-
niques; the summary is shown in Table 6. Based on the study performed by all researchers,
we can conclude that the most used method to binarize continuous metaheuristics is the
transfer function, belonging to the Simple Transformation; a summary of the most used
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functions can be seen in Table 8. In addition, we looked for what the different techniques
solved optimization problems; see Table 5.

This continuation of systematic study in this area is to find new forms of binarization
and to understand how continuous metaheuristics’ exploration and exploitation properties
map to binary metaheuristics. This is of public utility since knowing this information gives
way to improve results in metaheuristics and broaden the spectrum of binary problems to
be solved. This survey of the compilation of binarization techniques leads to the conclusion
that there is no general technique capable of binarizing efficiently, placing it above the others,
which is on a par with the No Free Lunch theorem [20], which indicates the same principle.
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