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A B S T R A C T

The aim of this study was to gather, discuss, and compare recently developed metaheuristics to understand
the pace of development in the field of metaheuristics and make some recommendations for the research
community and practitioners. By thoroughly and comprehensively searching the literature and narrowing the
search results, we created with a list of 57 novel metaheuristic algorithms. Based on the availability of the
source code, we reviewed and analysed the optimization capability of 26 of these algorithms through a series
of experiments. We also evaluated the exploitation and exploration capabilities of these metaheuristics by
using 50 unimodal functions and 50 multimodal functions, respectively. In addition, we assessed the capability
of these algorithms to balance exploration and exploitation by using 29 shifted, rotated, composite, and
hybrid CEC-BC-2017 benchmark functions. Moreover, we evaluated the applicability of these metaheuristics
on four real-world constrained engineering optimization problems. To rank the algorithms, we performed a
nonparametric statistical test, the Friedman mean rank test. Based on the statistical results for the unimodal
and multimodal functions, we declared that the GBO, PO, and MRFO algorithms have better exploration and
exploitation capabilities. Based on the results for the CEC-BC-2017 benchmark functions, we found the MPA,
FBI, and HBO algorithms to be the most balanced. Finally, based on the results for the constrained engineering
optimization problems, we declared that the HBO, GBO, and MA algorithms are the most suitable. Collectively,
we confidently recommend the GBO, MPA, PO, and HBO algorithms for real-world optimization problems.
. Introduction

The global minimum or maximum of a function/problem is found
hrough global optimization. The importance of global optimization
s evident from its critical role in a wide range of application areas,
uch as engineering (Deb, 1991; Sandgren, 1990; Golinski, 1973),
achine learning (Berwick, 2003; Nadaraya, 1964; Attik et al., 2005),
ireless sensor network optimization Jin et al. (2003), resource op-

imization and scheduling Hegazy and Kassab (2003), path planning
Brand et al. (2010), bioinformatics Handl et al. (2007), health care
Azcárate et al. (2008), vehicle routing Yu et al. (2009), image and
ignal processing Zibulevsky and Elad (2010), and process optimiza-
ion Biegler et al. (2014). Intractably large and complex search spaces
ake optimization problems NP-hard (Hochba, 1997). Exact algo-
ithms are a fundamental class of algorithms used to solve such
roblems. These algorithms include the exhaustive search, dynamic
rogramming-based methods, and branch and bound algorithms as well
s informed search algorithms such as the A* search algorithm (Parda-
os and Romeijn, 2013). For NP-hard problems, exact algorithms re-
uire exponential time, and the optimal solution may not guaranteedly
e found (Bianchi et al., 2008). In such cases, however, the approx-
mation algorithms such as greedy algorithms come into play and
ffer a near-optimal solution by dealing with computational intractabil-
ty (Gomes and Williams, 2005). Finding a near-optimal solution for
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inapproximable problems using traditional approximation algorithms
may become as difficult as finding the exact optimal solution. Meta-
heuristics have been used to reasonably address the inapproximable
nature of optimization problems (Gonzalez, 2007). In the last 3 to 4
decades, much research has been devoted to metaheuristics.

The term ‘‘metaheuristics’’, which was first coined by Glover (1986),
comprises two words meta and heuristic. The term ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 is derived
from the Greek verb (heuriskein), whose meaning is ‘to find’. One
branch of heuristics covers local searches, which usually start from
a random solution, and an attempt is made to improve the solution
through iterations (Bianchi et al., 2008). A few well-known examples
of local searches are the hill climbing, tabu search (Glover and Laguna,
1998), and local beam search algorithms (Ow and Morton, 1988). The
term 𝑚𝑒𝑡𝑎 is a Greek suffix whose meaning is ‘beyond, in an upper
level’. Thus, metaheuristics are algorithms that combine heuristics (that
are usually very problem-specific) in a more general framework to
make them problem independent. Metaheuristics, in general, belong to
the branch of approximation-based optimization algorithms; however,
there are many dimensions to further categorize metaheuristics. For
example, there are nature-inspired metaheuristics such as ant colony
optimization (ACO) (Dorigo and Caro, 1999), the African vultures opti-
mization algorithm (AVOA) (Abdollahzadeh et al., 2021), and artificial
gorilla troops optimizer (AGTO) (Abdollahzadeh et al., 2021b) and
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nonnature inspired metaheuristics such as tabu search (Glover and
Laguna, 1998). There are also single solution-based metaheuristics such
as simulated annealing (SA) (Kirkpatrick et al., 1983) and population-
based metaheuristics such as the genetic algorithm (GA) (Holland,
1992). Nature-inspired metaheuristics mimic the behaviour of living
creatures such as humans, animals, birds, fishes, insects, germs, and
bacteria or the laws of physics working behind natural processes and
phenomena.

In the presence of imperfect information and resource constraints,
the use of metaheuristics cannot guarantee that the global optimum
will be found; however, a near-optimal solution may be found (Bianchi
et al., 2008). Here, we discuss some common properties of metaheuris-
tics that have been mentioned in the literature: (i) they are usually very
simple and are easy to implement (Mirjalili and Lewis, 2016), (ii) they
are problem independent, and they do not require problem-specific
knowledge in advance to solve a problem; however, domain-specific
knowledge can be utilized to guide the search (Blum and Roli, 2003;
Boussaïd et al., 2013), (iii) a mechanism to globally search the space
and avoid or escape local optima can be added (Blum and Roli, 2003;
Boussaïd et al., 2013), (iv) they may utilize their search experience to
guide the search (Blum and Roli, 2003; Boussaïd et al., 2013), (v) they
are usually not dependent on the gradient information, unlike many
other gradient-based algorithms, and (vi) they have tremendous capa-
bility to find good results for complex problems in limited time (Bianchi
et al., 2008). Moreover, in metaheuristics, ideas to address an opti-
mization problem are mapped based on a few common fundamental
elements. These elements include the representation of the candidate
solution (usually a vector), design variables involved in the problem
(dimensions of the solution vector), evaluation function to measure
the quality of the solution (objective/cost function), the ultimate goal
(global optimum), and the position-updating mechanism (mathemati-
cal equation(s) and parameter(s)) to map the collaborative intelligent
behaviour of the solutions in the whole population. Moreover, the
mapping process is supposed to assure the following metaheuristic
characteristics (Yang, 2010a; Bianchi et al., 2008; Blum and Roli, 2003;
Boussaïd et al., 2013; Gandomi et al., 2013):

• Exploration (diversification): The process of exhaustively
searching the solution space to find the promising areas. An
algorithm may not locate the area containing the global optimum
if it does not have good exploration capability.

• Exploitation (intensification): The process of searching in a
promising region to find the best solution. An algorithm may not
be able to find the optimum of the promising region without this
capability.

• Convergence: The state when the characteristics of all solutions
of a population-based metaheuristics become similar and the
solutions stop improving. If lacking this ability, an algorithm may
not be able to exploit the promising region well.

• Premature convergence avoidance: Premature convergence is
the state that occurs when the whole population converges to
some local optimum in early iterations. This usually happens
when the algorithm cannot escape local optima due to having an
unbalanced ratio of exploration and exploitation.

• Convergence speed: How quickly the characteristics of all so-
lutions become similar is called the convergence speed of the
algorithm. A reasonable algorithm is supposed to have a good
convergence speed that prevents premature convergence. How-
ever, it allows the most promising areas to be exploited to reach
the exact global optimum.

In this paper, a comprehensive review of recently developed meta-
euristics is presented, and the optimization capability of 26 algo-
ithms is comparatively analysed. To prepare the list of recent algo-
ithms, several keywords, such as metaheuristics, metaheuristic op-
imization, numerical optimization, constrained optimization, global
ptimization, optimization algorithms, evolutionary algorithms, swarm
2

intelligence, global search, computational intelligence, and heuristic
search, were used. Our primary source was Google Scholar; however,
we also searched other sources such as IEEE, Elsevier, Springer, ACM,
and Hindawi. The result was a large list of more than 200 articles pub-
lished in last two years. However, we shortened this list by removing
variants, hybrid approaches, and application-based papers. Then, we
created a list of 57 novel algorithms. In the second round, we searched
different sources such as MathWorks, GitHub, ResearchGate and the
websites of authors for the source codes of the algorithms on the list.
We also emailed some authors for their source codes. Finally, based
on the availability of the source codes, we included 26 algorithms
for a comparative study using a diverse set of benchmark functions
and engineering optimization problems. This paper contributes to the
literature in the following respects:

1. Recently proposed metaheuristics are collected and presented
together to allow heuristics developers to understand the pace
and nature of developments in this field.

2. Based on the availability of the source code, the exploitation
capability, exploration capability, convergence behaviour, and
constrained engineering problem-solving ability of 26 meta-
heuristics are analysed. Such analysis will help heuristics practi-
tioners choose appropriate algorithms to solve real-world appli-
cations.

3. By using the nonparametric Friedman mean rank test, these
metaheuristics are ranked based on their ability to meet different
optimization challenges. This ranking highlights the strengths
and weaknesses of these metaheuristics, which will enable
heuristics developers to improve the weak aspects of these
algorithms.

The rest of the paper is structured as follows: A comprehensive
literature review is presented in Section 2 by covering state-of-the-
art and modern metaheuristics. The recently proposed algorithms that
are being evaluated and comparatively analysed in this paper are
discussed in Section 3. In Section 4, the comparative setup, benchmarks
functions, and engineering problems that are used for the evaluation of
the selected algorithms are discussed. Moreover, the generated results
are presented in this section. The individual-level performance and
comparative analysis of each algorithm along with its weaknesses and
strengths are discussed in Section 5. Finally, this study is concluded in
Section 6.

2. Literature review

Hundreds of nature-inspired metaheuristics have been proposed in
the literature in the last 4 to 5 decades. Researchers have mapped the
optimal behaviours of living creatures, physical phenomena and pro-
cesses, social interaction-based behaviours, and hypothetical ideas to
propose optimization algorithms. In this section, some state-of-the-art
and well-known modern metaheuristics are reviewed.

2.1. State-of-the-art metaheuristics

One of the fundamental and state-of-the-art metaheuristics is the ge-
netic algorithm (GA). GA was first proposed by Fraser in 1957 (Fraser,
1957a,b) and then formalized and popularized by Holland in 1975
(Holland, 1975). In the canonical GA (Holland, 1975), a solution is
encoded as a bitstring, the concept of the survival of the fittest is imple-
mented through proportionate selection, and the phase of reproduction
is mapped using one-point crossover. However, the mutation operator
was later added to enhance the exploration capability. In 1962, Fogel
proposed evolutionary programming (EP) (Fogel, 1962, 1964). The
genetic model is evolved through GA, while the behavioural model is
evolved through EP. Moreover, there is no recombination operator in
EP; its framework includes only mutation, evaluation, and selection

operators. Because there is no recombination operator, the mutation



A. Alorf Engineering Applications of Artificial Intelligence 117 (2023) 105622

a
a
b
1
a
d
a
s
e
w
p
s
s

i
t
a
p
a
m
c
i
b
p
l
P
d
D
e
t
c
a
a
a
t
m
b
t
c
b
a
n
p
b
b
a
f
e
a
o

2

b

I
t
m
t

v
i
p
p
i
i
p
a
o
c
b
t
c
a
p
b
t
s

o
a
c
g
t
w
u
o
c
p
2
o
T
f
G
(
b
i
c
c
u
a
a
s
a
t
c
s

g
g
d
i
e
l
b
2
m
e
l

operator is responsible for generating new offspring and balancing
exploration and exploitation. In 1965, Rechenberg proposed the evo-
lutionary strategy (ES) (Rechenberg, 1965), which is also referred
to as (1 + 1)−ES, to solve hydrodynamic problems. It involves only
one solution along with a self-adapting strategic vector that is utilized
during mutation to generate offspring from the only parent. Later,
in 1978, Rechenberg introduced the concept of population in ES and
named this variant (𝜇 + 1)−ES (Rechenberg, 1978). In this variant,
two parents are selected randomly and recombined by using 𝑛−point
crossover to produce an offspring that is mutated by using a strategic
vector. Later, in 1993, Bäck and Schwefel generalized the scheme to
(𝜇 + 𝜆)−ES (Bäck and Schwefel, 1993). In this variant, 𝜆 offspring
re generated in a row, and then selection is performed to obtain
new generation. In 1983, Kirkpatrick et al. proposed a trajectory-

ased algorithm, called simulated annealing (SA) (Kirkpatrick et al.,
983), inspired by the annealing process in metallurgy. In metallurgy,
material is heated and then cooled in a controlled way to remove

efects. The concept is mapped through a temperature variable 𝑇
nd the fitness difference of the current and previous states of the
olution. The value of temperature variable 𝑇 is kept very high in
arly iterations, which promotes exploration, and it gradually decreases
ith the number of iterations to enhance exploitation. In 1989, Koza
roposed genetic programming (GP) (Koza, 1989, 1990). GP is a
pecialization of GA, but unlike GA, individuals are encoded as tree
tructures in GP.

In 1992, Dorigo proposed the ant algorithm (AA) (Dorigo, 1992)
n his Ph.D. thesis to solve the travelling salesman problem. AA was
he preliminary version of ant colony optimization (ACO) (Dorigo
nd Caro, 1999) proposed by Dorigo and Caro in 1999. Ants lay
heromones on a path when they find a food source, encouraging other
nts to follow the same path. A shorter path begins to emerge when
ore ants follow it, and the pheromone concentration on the path in-

reases (Dorigo et al., 1996). To solve the travelling salesman problem
n ACO, the behaviour of ants who stochastically and incrementally
uild solutions by choosing next cities according to their selection
robability, which is determined by the amount of pheromone on the
ink and the desirability of the link, is mimicked. In 1997, Storn and
rice proposed another state-of-the-art evolutionary algorithm named
ifferential evolution (DE) (Storn and Price, 1997; Price et al., 2006).
E shares the general model of evolutionary algorithms; however, DE
xtends the model by utilizing distance and direction-related informa-
ion of the solutions. DE was developed to solve problems from the
ontinuous domain. Unlike GA, mutation is performed first to generate
trial vector, which is used to perform crossover. In 1995, Kennedy

nd Eberhart proposed particle swarm optimization (PSO) (Kennedy
nd Eberhart, 1995) by mapping the flying behaviour of a flock of birds
hat adapt to reach a roost. The search agents (birds) fly in a hyperdi-
ensional search space, where the search agents update their position

ased on their previous velocity (inertia component), the position of
he best search agent of the flock, called the global best solution (social
omponent), and their own historical best position, called the personal
est position (the cognitive component). Exploration and exploitation
re balanced by tuning the parameters. After PSO and ACO, hundreds of
ovel swarm-based metaheuristics, variants, and hybrids of existing ap-
roaches were proposed. Some prominent algorithms are the artificial
ee colony (ABC) (Karaboga, 2005) algorithm inspired by the foraging
ehaviour of honeybees and proposed by Karaboga and the firefly
lgorithm (FA) (Yang, 2010b) inspired by the flashing behaviour of
ireflies, the cuckoo search (CS) (Yang and Deb, 2009) inspired by the
gg-laying behaviour of cuckoos in the nests of other birds, and the bat
lgorithm (BA) (Yang, 2010c) inspired by the echolocation behaviour
f microbats, all of which were proposed by Yang.

.2. Well-known modern age metaheuristics

In 2001, Geem et al. proposed one of the early human-behaviour-
ased metaheuristics called harmony search (HS) (Geem et al., 2001).
3

t was inspired by the improvisation process of jazz musicians. Finding
he global optimum resembles producing a perfectly pleasing har-
ony. Each harmonic is considered a candidate solution, and the

otal harmony memory is regarded as the population. Each 𝑗th design
variable (pitch note) of the new solution (improvised harmonic) is
updated by replacing it with the 𝑗th variable of a randomly selected
harmonic (memory consideration phase) by locally perturbing the 𝑗th
ariable of the existing harmonic (pitch adjustment phase) or randomly
nitializing the 𝑗th variable in the feasible range (random selection
hase). An improvised solution replaces the worst solution of the
opulation if it is better than the worst solution. In HS, exploration
s ensured through the random selection phase, and exploitation is
ncorporated in a controlled manner in memory consideration and
itch adjustment. Parameter tuning is required to balance exploration
nd exploitation. In 2002, Xie et al. proposed the social cognitive
ptimization algorithm (SCOA) (Xie et al., 2002) inspired by social
ognitive theory, which assumes that humans learn by observing the
ehaviour of others and symbolizes/models the behaviour of others
o guide behaviour. These capabilities are referred to as vicarious
apability and symbolizing capability, respectively. In SCOA, a learning
gent is considered a candidate solution whose position is a knowledge
oint in the knowledge space. In contrast, the knowledge space may
e considered the library. Symbolizing capability is mapped through
he library, and vicarious capability is implemented via tournament
election and position updates through neighbourhood searches.

In 2003, Ray and Liew proposed the society and civilization (SC)
ptimization algorithm (Ray and Liew, 2003) inspired by the intra-
nd intersociety interactions between the individuals in society and the
ivilization model. An individual is considered a candidate solution. A
roup of individuals forms a society, and societies collectively form
he civilization, which is regarded as the population. The individuals
ith better fitness are called leaders. Ordinary individuals in a society
pdate their position by interacting with their leaders, and the leaders
f different societies interact with leaders in the civilization, who are
hosen from the leaders of the societies. In 2006, Erol and Eksin
roposed the big bang-big crunch (BBBC) algorithm (Erol and Eksin,
006) inspired by the theory of creation, expansion, and shrinkage
f the universe. BBBC involves two phases: big bang and big crunch.
he big bang phase promotes exploration, and the big crunch phase
ocuses on exploitation, leading to convergence. In 2007, Atashpaz-
argari and Lucas proposed the imperialist competitive algorithm
ICA) (Atashpaz-Gargari and Lucas, 2007). This algorithm was inspired
y the concept of imperialism. Imperialism is the process of construct-
ng powerful empires by holding control over other countries. The
ountries that have such control are called imperialists. Each country is
onsidered a candidate solution, and the set of all countries is the pop-
lation. The solutions that have better fitness are known as imperialists
nd the others as colonies. The dominance of imperialists is mapped by
ssociating the colonies (weak solutions) with the imperialists (strong
olutions). Colonies update their positions with respect to imperialists
nd replace them if the fitness of the colonies becomes better than
he fitness of the imperialists. The total strength of each empire is
omputed, and the weakest colony of the weakest empire is shifted to
ome other empire. Empires with no colonies are finally eliminated.

In 2009, Rashedi et al. proposed the gravitational search al-
orithm (GSA) (Rashedi et al., 2009) inspired by Newton’s law of
ravitation and the second law of motion. In GSA, a particle is a candi-
ate solution whose fitness is used to compute its mass. Exploitation
s achieved by moving heavier objects (good solutions) slowly, and
xploration is achieved through the comparatively fast movement of
ighter objects (poor solutions). However, GSA suffers from the lack of
alance between exploitation and exploration (Yazdani and Meybodi,
015). In 2011, Rao et al. proposed teaching learning-based opti-
ization (TLBO) (Rao et al., 2011) inspired by the teaching-learning

nvironment in the classroom. The search agents represent a class of
earners who interact with each other to find the global optimum. The
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algorithm involves two phases: the teacher phase and the learner phase.
In the teacher phase, the best solution is considered as the teacher,
and the mean of the whole class is shifted towards it. In the learner
phase, the concept of learning is mimicked through interaction with
some random learners. In the learner phase, a search agent updates
its position based on the difference between two randomly selected
solutions. In 2012, Yang proposed the flower pollination algorithm
(FPA) (Yang, 2012) inspired by the pollination process in flowers,
which involves two methods: cross-pollination and self-pollination.
Cross-pollination promotes exploration, and self-pollination promotes
exploitation. A flower is considered a candidate solution, where in the
cross-pollination phase, its position is updated in reference to the global
best by using the Levy distribution. In the phase of self-pollination,
its position is updated with respect to the difference between two
randomly selected solutions.

In 2014, Moosavian and Roodsari proposed the soccer league com-
petition algorithm (SLCA) (Moosavian and Roodsari, 2014) inspired
by competitions between the teams (clubs) in a soccer league. A total
of 𝑛 teams participate in a league, each playing a match against every
other team. A team has 11 fixed players as well as a few substitute
players. The teams struggle to earn points, and players on a team
struggle to become star players on their teams and superstar players
in the league. In a match, the winner is decided by comparing the
average fitness of all fixed players of one team with the average fitness
of all fixed players of another team. After each match, two operators
are applied: imitation and provocation. In the imitation phase, the
fixed players of the winning team update their positions, and in the
provocation phase, substitute players attempt to become fixed players
by updating their positions. In 2014, Mirjalili et al. proposed grey
wolf optimizer (GWO) (Mirjalili et al., 2014) inspired by the social
hierarchy and the hunting behaviour of grey wolves. To simulate the
social hierarchy (leadership), the population of grey wolves is divided
into four levels: alpha (𝛼), beta (𝛽), delta (𝛿), and omega (𝜔). The
hunting behaviour is divided into four steps: searching for the prey,
encircling the prey, hunting the prey, and attacking the prey. The
encircling and hunting behaviour are modelled by updating the position
of the search agent with respect to the best solution(s) and taking the
average of the updated positions. However, the attacking and searching
behaviours are modelled through different values of the parameters.
Later, in 2016, Mirjalili and Lewis proposed the whale optimization
algorithm (WOA) (Mirjalili and Lewis, 2016) inspired by the bubble-
net foraging behaviour of humpback whales. To hunt their prey, whales
generate bubbles, rotate around their prey in a spiral fashion, and move
upwards. The algorithm is divided into three phases: searching for
the prey, encircling the prey, and mimicking the bubble-net attacking
method. The encircling and searching phases are implemented similarly
to GWO, but in the searching phase, a random solution is referenced
instead of the best solution. However, the bubble-net attacking method
is modelled through a logarithmic spiral equation. Exploration and
exploitation are balanced by the adaptive parameters. In the same
year, Mirjalili proposed the sine cosine algorithm (SCA) (Mirjalili,
2016) inspired by two trigonometric functions, sine and cosine. SCA
randomly initiates a population of 𝑁 search agents, and the fittest
solution is proclaimed as the destination solution. All search agents
update their positions with respect to the destination solution 𝑃 by us-
ing either the sine function or cosine function. The algorithm performs
exploration in the first half of the iterations and performs exploitation
in the second half.

2.3. Metaheuristics developed in 2017–2018

Some well-known metaheuristics developed in 2017 are the vibrat-
ing particles system algorithm (VPSA) (Kaveh and Ghazaan, 2017)
inspired by the free vibration of single-degree-of-freedom systems with
viscous damping, the tree growth algorithm (TGA) (Cheraghalipour
and Hajiaghaei-Keshteli, 2017) inspired by the competition of trees
4

when acquiring light and food, the cyclical parthenogenesis algorithm
(CPA) (Kaveh and Zolghadr, 2017) inspired by the reproduction and
social behaviour of some zoological species, such as aphids, which can
reproduce with and without mating, the water evaporation algorithm
(WEA) (Saha et al., 2017) inspired by the evaporation (vaporiza-
tion) of small quantities of water particles from dense surfaces, the
thermal exchange optimization algorithm (TEOA) (Kaveh and Dadras,
2017) inspired by Newton’s law of cooling, spotted hyena optimizer
(SHO) algorithm (Dhiman and Kumar, 2017) inspired by the be-
haviour of spotted hyenas, and the human mental search algorithm
(HMSA) (Mousavirad and Ebrahimpour-Komleh, 2017) inspired by the
exploration strategies of the bid space in online auctions. Moreover,
well-known metaheuristics proposed in 2018 are the farmland fertil-
ity algorithm (FFA) (Shayanfar and Gharehchopogh, 2018) inspired
by farmland fertility in nature, earthworm optimization algorithm
(EOA) (Wang et al., 2018) inspired by earthworm contributions in na-
ture, the rhino herd algorithm (RHA) (Gao et al., 2018) inspired by the
herding behaviour of rhinos, queuing search algorithm (QSA) (Zhang
et al., 2018) inspired by human activities when queuing, car tracking
optimization algorithm (CTOA) (Chen et al., 2018) inspired by observ-
ing the programming methods of other metaheuristic algorithms, the
self-defence mechanism of the plants (SDMP) algorithm (Caraveo et al.,
2018) inspired by the self-defence mechanisms of plants, and the coyote
optimization algorithm (COA) (Pierezan and Coelho, 2018) inspired by
the Canis latrans species.

2.4. Metaheuristics developed in 2019

Some well-known evolution/swarm-based metaheuristics developed
in 2019 are the squirrel search algorithm (SqSA) (Jain et al., 2019)
inspired by the foraging behaviour of flying squirrels, the seagull
optimization algorithm (SOA) (Dhiman and Kumar, 2019) inspired
by the migration and attacking behaviours of seagulls, the Hitchcock
bird inspired algorithm (HBIA) (Morais et al., 2018) inspired by the
aggressive bird behaviour portrayed by Hitchcock, the sea lion op-
timization (SLnO) algorithm (Masadeh et al., 2019) inspired by the
hunting behaviour of sea lions, the emperor penguins colony (EPC)
algorithm (Harifi et al., 2019) inspired by the spiral-like movement of
penguins colonies, the sailfish optimizer (SFO) (Shadravan et al., 2019)
inspired by the hunting strategies of sailfishes, the bald eagle search
(BES) (Alsattar et al., 2019) inspired by the hunting strategies of bald
eagles, the Naked mole-rat (NMR) algorithm (Salgotra and Singh, 2019)
inspired by the mating patterns of naked mole-rats, the butterfly opti-
mization algorithm (BOA) (Arora and Singh, 2018) inspired by the food
searching and mating behaviours of butterflies, and Harris hawks opti-
mization (HHO) (Heidari et al., 2019) inspired by the cooperative and
chasing behaviours of Harris hawks. In addition to evolution/swarm-
based algorithms, some of the human social interaction-based algo-
rithms developed in 2019 are the ludo game-based swarm intelligence
(LGSI) algorithm (Singh et al., 2019) inspired by ludo playing strate-
gies, the poor and rich optimization (PRO) algorithm (Moosavi and
Bardsiri, 2019) inspired by the behaviours of people as they obtain
wealth and improve their economic situation, the expectation algorithm
(ExA) (Shastri et al., 2019) inspired by societal individuals as problem
variables, the social media inspired algorithm (SMIA) (Crawford et al.,
2019) inspired by interactions on social media, the supply–demand-
based optimization (SDO) algorithm (Zhao et al., 2019) inspired by
the relations between suppliers and consumers, the nomadic people
optimizer (NPO) algorithm (Salih and Alsewari, 2019) inspired by
the behaviour of nomads, the social mimic optimization (SMO) algo-
rithm (Balochian and Baloochian, 2019) inspired by assimilation to
famous people, find–fix–finish–exploit–analyse (F3EA) (Kashan et al.,
2019) inspired by war strategies, and the deer hunting optimization
algorithm (DHOA) (Brammya et al., 2019) inspired by the deer hunting

strategy of humans.
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Fig. 1. Number of novel metaheuristics by category.
Fig. 2. Number of novel metaheuristics published in any journal/conference.
3. Recently proposed novel metaheuristics

After thoroughly searching the literature using approximately 30
keywords and narrowing the results by ignoring variant and hybrid
approaches, we developed a list of 57 novel metaheuristics published in
2020–21. However, we do not claim that this list is all-inclusive. For a
quick review, the metaheuristics along with their source of inspiration
are presented in Table 1. Based on their source of inspiration, we
classify the metaheuristics into five major groups: evolution/swarm-
based algorithms, sports/game-based algorithms, math/physics-based
algorithms, human social interaction-based algorithms, and concept/
process-based algorithms. The development of algorithms in 2020–21
based on these categories is highlighted in Fig. 1. As shown in this
figure, most of the recently developed metaheuristics belong to the
math/physics-based algorithm and evolution/swarm-based algorithm
categories. Moreover, in the course of our research, we have learned
5

that most metaheuristic research is published in Expert Systems with
Applications and Engineering Applications of Artificial Intelligence. For
clarity, we have summarized the number of metaheuristics published in
any journal/conference in Fig. 2.

3.1. Swarm/evolution-based algorithms

In this subsection, the mechanisms of recently proposed swarm-
based or evolution-based algorithms are discussed.

3.1.1. Barnacles mating optimizer (BMO)
BMO (Sulaiman et al., 2020) is inspired by the mating behaviour of

barnacles. Barnacles are microorganisms that are considered candidate
solutions in this algorithm. The algorithm comprises of two phases:
selection and reproduction. In the selection phase, two parent barnacles
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Table 1
List of recently published metaheuristics.

Algorithm Source of inspiration

Swarm/evolution-based algorithms

Barnacles mating optimizer (BMO) (Sulaiman et al., 2020) Mating behaviour of barnacles
Bear smell search algorithm (BSSA) (Ghasemi-Marzbali, 2020) Movement and sensing behaviours of bears and their ability to smell
Black widow optimization algorithm (BWOA) (Hayyolalam and Kazem,
2020)

Mating behaviour of black widow spiders

Caledonian crow learning algorithm (CCLA) (Al-Sorori and Mohsen,
2020)

Learning behaviour of New Caledonian crows as they develop tools from Pandanus trees to
obtain food

Chimp optimization algorithm (ChOA) (Khishe and Mosavi, 2020) Individual intelligence and sexual motivation of chimps in group hunting
Coronavirus optimization algorithm (CvOA) (Martínez-Álvarez et al.,
2020)

How coronaviruses spread and infect their hosts

Dynamic group-based cooperative optimization (DGBCO) (Fouad et al.,
2020)

Cooperative behaviour is adopted by individuals in a swarm to achieve global goals

Manta ray foraging optimization (MRFO) (Zhao et al., 2020) Intelligent foraging behaviour of manta rays
Marine predators algorithm (MPA) (Faramarzi et al., 2020a) Lévy and Brownian movements in ocean predators
Mayfly algorithm (MA) (Zervoudakis and Tsafarakis, 2020) Flight and mating behaviours of mayflies
Parallel fully dynamic iterative bio-inspired (PFDIBI) algorithm (Arslan,
2020)

Physarum Polycephalum foraging

Parasitism-predation algorithm (PPA) (Mohamed et al., 2020) Crow–cuckoo–cat system model
Red deer algorithm (RDA) (Fathollahi-Fard et al., 2020) Mating behaviour of Scottish red deer in breeding season
Shuffled shepherd optimization method (SSOM) (Kaveh and Zaerreza,
2020)

Using animal instinct to find the best way

Sine tree-seed algorithm (STSA) (Jiang et al., 2020) Relation between trees and their seeds
Slime Mould Algorithm (SMA) (Li et al., 2020) Oscillation mode of slime mould in nature
Tunicate swarm algorithm (TSA) (Kaur et al., 2020) Jet propulsion and swarm behaviours of the tunicates
Water strider algorithm (WSA) (Kaveh and Eslamlou, 2020) Tunicate life cycle of water strider bugs
Ebola optimization search algorithm (EOSA) (Oyelade et al., 2022) Propagation mechanism of the Ebola virus
Aquila optimizer (AO) (Abualigah et al., 2021b) Prey catching behaviour of Aquila
Reptile search algorithm (RSA) (Abualigah et al., 2022) Hunting behaviour of crocodiles
Arithmetic optimization algorithm (RrOA) (Abualigah et al., 2021a) Arithmetic operators
Dwarf mongoose optimization (DMO) (Agushaka et al., 2022) Foraging behaviour of the dwarf mongoose

Sports/game-based algorithms

Billiards-inspired optimization algorithm (BIOA) (Kaveh et al., 2020a) Billiard ball collisions
Darts game optimizer (DGO) (Dehghani et al., 2020a) Simulating the rules of the darts game
Kho-kho optimization algorithm (KKOA) (Srivastava and Das, 2020) Strategies used by players in a tag-team game
Hide objects game optimization (HOGO) (Dehghani et al., 2020b) Search agents who try to find a hidden object in a given space

Math/physics-based algorithms

Archimedes optimization algorithm (AOA) (Hashim et al., 2020) Archimedes’ principle
Artificial electric field algorithm (AEFA) (Yadav et al., 2020) Coulomb’s law of electrostatic force and Newton’s law of motion
Balancing composite motion optimization (BCMO) (Le-Duc et al., 2020) Balancing composite motions
Black hole mechanics optimization (BHMO) (Kaveh et al., 2020b) Black hole mechanics
Dynamic differential annealed optimization (DDAO) (Ghafil and
Jármai, 2020)

Random search and classical SA

Equilibrium optimizer (EO) (Faramarzi et al., 2020b) Control volume mass balance models
Filter nonmonotone adaptive trust region method (FNATRM) (Wang
et al., 2020)

Nonmonotone trust-region ratio

Generalized normal distribution optimization (GNDO) (Zhang et al.,
2020)

The generalized normal distribution model

Gradient-based optimizer (GBO) (Ahmadianfar et al., 2020) Newton’s gradient-based method
Grey prediction evolution (GPE) (Hu et al., 2020) Even grey model
Limited memory Q-BFGS algorithm (LMQA) (Lai et al., 2020) BFGS-type update using q-derivatives
Momentum search algorithm (MSA) (Dehghani and Samet, 2020) Newton’s law of conservation of momentum
Newton metaheuristic algorithm (NMA) (Gholizadeh et al., 2020) Newton’s gradient-based method
Photon search algorithm (PSA) (Liu and Li, 2020) Photon properties in the field of physics
Quantum-inspired algorithm (QIA) (Mu et al., 2020) Quantum computing
Transient search optimization (TSO) (Qais et al., 2020) Transient behaviour of switched electrical circuits
Turbulent flow of water-based optimization (TFWO) (Ghasemi et al.,
2020)

Whirlpools created in turbulent water

Vapour–liquid equilibrium (VLE) algorithm (Taramsco et al., 2020) Vapour–liquid equilibrium process
Volcano eruption algorithm (VEA) (Hosseini et al., 2020) Nature of volcano eruption

Human social interaction-based algorithms

Adolescent identity search algorithm (AISA) (Bogar and Beyhan, 2020) Identity development/search of adolescents
Forensic-based investigation (FBI) algorithm (Chou and Nguyen, 2020) Suspect investigation–location–pursuit process of police officers
Giza pyramid construction (GPC) (Harifi et al., 2020) Pushing stones on ramps by workers to construct pyramids
Group teaching optimization algorithm (GTOA) (Zhang and Jin, 2020) Group teaching mechanism
Heap-based optimizer (HBO) (Askari et al., 2020a) Corporate rank hierarchy
Human dynasties optimization algorithm (HDOA) (Wagan et al., 2020) Social behaviour in human dynasties
Human urbanization algorithm (HUA) (Ghasemian et al., 2020) Human behaviour for urbanization and improving life situations
Interactive autodidactic school (IAS) (Jahangiri et al., 2020) Interactions between students in an autodidactic school
Political optimizer (PO) (Askari et al., 2020b) Multiparty political system
Search and rescue optimization algorithm (SROA) (Shabani et al.,
2020)

Exploration behaviour of humans during search and rescue operations

(continued on next page)
6
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Table 1 (continued).
Algorithm Source of inspiration

Concept/process-based algorithms

Group optimization (GO) (Dehghani et al., 2020) Whole group involvement in position updating
Lévy flight distribution (LFD) (Houssein et al., 2020) Lévy flight random walk for exploration
Color harmony algorithm (CHA) (Zaeimi and Ghoddosian, 2020) Combining harmonic colours based on their relative positions around the hue circle
Opposition-based high dimensional optimization (OHDO)
algorithm (GhaemiDizaji et al., 2020)

Angular movement according to a few selected dimensions

Optimization algorithm based on OCM And PCM (OAOP) (Gong and
razmjooy, 2020)

Cost minimization and payment cost minimization

Rain optimization algorithm (ROA) (Moazzeni and Khamehchi, 2020) Movement of rain drops to the minimum point
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are selected based on the length of their penises (𝑝𝑙). In reproduction
phase, the Hardy–Weinberg principle is used for offspring generation.
Suppose 𝑝𝑙 of the father’s barnacle is in the selection range of the parent
barnacles. Then, 𝑝% characteristics are selected from the father, and
(1 − 𝑝)% characteristics are selected from the mother; otherwise, a new
offspring is generated by mutating only the mother’s characteristics.
The former approach promotes exploitation, and the latter promotes
exploration.

The generation of offspring from the mating process of the parents
is formulated in the following equation:

𝑥𝑁𝑛𝑒𝑤
𝑖 = 𝑝𝑥𝑁𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒𝑑 + 𝑞𝑥𝑁𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒𝑚 (1)

where 𝑝 is a random number in the range of [0, 1], and 𝑞 is equal
to (1 − 𝑝). The solution for the father is represented by 𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒𝑑
and the solution for the mother is represented by 𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒𝑚. The cap
is exceeded if barnacle1 chooses barnacle8. Thus, the usual mating
process is stopped. The process of casting sperm is currently used to
generate the offspring. The sperm cast, as it is termed in BMO, describes
the exploration process as follows:

𝑥𝑁𝑛𝑒𝑤
𝑖 = 𝑟𝑎𝑛𝑑() × 𝑥𝑛𝑏𝑎𝑟𝑛𝑎𝑐𝑙𝑒𝑚 (2)

where 𝑟𝑎𝑛𝑑() generates a random number in the range [0, 1].

.1.2. Black widow optimization algorithm (BWOA)
BWOA (Hayyolalam and Kazem, 2020) is inspired by the mating

ehaviour of black widow spiders. Female black widow spiders typi-
ally construct their nets at night and disperse pheromones in particular
reas in order to attract male black spiders to mate with. As male black
idow spiders are drawn to this pheromone, they are drawn into the
eb. The female black widow spider eats the male black widow spider
fter or during mating. The female black widow lays her egg sacks in
he net after mating. The eggs hatch into young, cannibalistic spiders
fter 11 days. Strangely, the mother may occasionally eat some of the
oung spiders while they are held in the mother’s net. This suggests that
he surviving spiders are the most healthy and fittest spiders, which is
he motivation behind this new algorithm.

A black widow spider is considered as a candidate solution, and
nitially, a population of spiders is randomly generated. The algorithm
nvolves three main phases: procreation, cannibalism, and mutation. In
he procreation step, randomly selected pairs of spiders mate to gen-
rate offspring. The cannibalism phase involves three behaviours: (i)
other eats father, (ii) sibling eats other siblings, and (iii) offspring eat
other. Finally, in the mutation step, two randomly selected elements

f an individual are exchanged. Rate exploration is incorporated in the
rocreation step, exploitation is introduced and the convergence speed
s enhanced in the cannibalism step, and exploration and exploitation
re balanced in the mutation step.

The reproduction process of BWOA is formulated in the following
quation:

𝑖,𝑑 = 𝛽 ×𝑋𝑖,𝑑 + (1 − 𝛽) ×𝑋𝑗,𝑑

𝑗,𝑑 = 𝛽 ×𝑋𝑗,𝑑 + (1 − 𝛽) ×𝑋𝑖,𝑑 (3)

n above equation, 𝑖 and 𝑗 are random numbers that are generated in

he range [0, 1], 𝛽 is also a random number but its range is [1, 𝑁], and

7

𝑖,𝑑 and 𝑌𝑗,𝑑 are the offspring. In addition to reproduction, the mutation
peration is also formulated, as shown below:

𝑘,𝑑 = 𝑌𝑘,𝑑 + 𝛼 (4)

here 𝛼 is a random mutation, 𝑍 is the mutated spider, and 𝑌 is the
andomly selected spider that is being mutated.

.1.3. Chimp optimization algorithm (ChOA)
ChOA (Khishe and Mosavi, 2020) is a swarm-based algorithm in-

pired by the individual intelligence of chimps and their sexual moti-
ation in group hunting. Each chimp is considered a candidate solution.
he process of evolution is led by the top four solutions in the popula-
ion, which are the attacker, driver, barrier, and chaser solutions. The
lgorithm involves two main phases: (i) driving, blocking, and chasing
he prey, which promote exploration, and (ii) attacking the prey, which
romotes exploitation. Each solution updates its position with respect
o either the four best solutions or the mean of all four solutions. The
ransition between exploration and exploitation is controlled with the
elp of carefully designed parameters. Moreover, to escape local optima
nd enhance the convergence speed, six types of chaotic maps are used
n the position-updating mechanism of ChOA.

The positions of the attacker, driver, barrier, and chaser solutions
re updated using the following mathematical equations:

𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = 𝑥𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝐴1(𝐶1𝑥𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 −𝑀1𝑥)

𝑑𝑟𝑖𝑣𝑒𝑟 = 𝑥𝑑𝑟𝑖𝑣𝑒𝑟 − 𝐴2(𝐶2𝑥𝑑𝑟𝑖𝑣𝑒𝑟 −𝑀2𝑥)

𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 𝑥𝑏𝑎𝑟𝑟𝑖𝑒𝑟 − 𝐴3(𝐶3𝑥𝑏𝑎𝑟𝑟𝑖𝑒𝑟 −𝑀3𝑥)

𝑐ℎ𝑎𝑠𝑒𝑟 = 𝑥𝑐ℎ𝑎𝑠𝑒𝑟 − 𝐴4(𝐶4𝑥𝑐ℎ𝑎𝑠𝑒𝑟 −𝑀4𝑥)

In the above equations, 𝑋𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟, 𝑋𝑑𝑟𝑖𝑣𝑒𝑟, 𝑋𝑏𝑎𝑟𝑟𝑖𝑒𝑟, and 𝑋𝑐ℎ𝑎𝑠𝑒𝑟 are
he positions of the attacker, driver, barrier, and chaser, respectively.
urthermore, 𝑀𝑖 is the chaotic map, and other parameters, such as 𝐴
nd 𝐶, are computed as follows:

= 2 ⋅ 𝑓 ⋅ 𝑟1 − 𝑓

= 2 ⋅ 𝑟2

here 𝑟1 and 𝑟2 are random variables with values in the range [0, 1],
nd 𝑓 nonlinearly decreases from 2.5 to 0. The final position updating
quation is presented below, in which the average of all top four chimps
s calculated.

(𝑡 + 1) =
𝑥𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 + 𝑥𝑑𝑟𝑖𝑣𝑒𝑟 + 𝑥𝑏𝑎𝑟𝑟𝑖𝑒𝑟 + 𝑥𝑐ℎ𝑎𝑠𝑒𝑟

4
(5)

3.1.4. Manta ray foraging optimization (MRFO)
MRFO (Zhao et al., 2020) is inspired by the intelligent foraging

behaviours of manta rays, which are large marine creatures. In this
algorithm, a manta ray is considered a candidate solution, and the
best-known solution is plankton, which is a food source for manta
rays. The algorithm comprises three phases to simulate three different
foraging behaviours of manta rays: chain foraging, cyclone foraging,
and somersault foraging. In chain foraging, the manta rays follow each
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other by swimming in a row; the leader (best solution) is the nearest
to the plankton. This behaviour is mapped by deriving an equation to
update the position of each solution with regard to the global best and
next index-wise solution, which is presented below:

𝑥𝑖(𝑡 + 1) =
{

𝑥𝑖 + 𝑟 ⋅
(

𝑥best − 𝑥𝑖(𝑡)
)

+ 𝛼 ⋅
(

𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)
)

𝑖 = 1
𝑥𝑖 + 𝑟 ⋅

(

𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡)
)

+ 𝛼 ⋅
(

𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)
)

𝑖 = 2,… , 𝑁

(6)

where 𝛼 is the weight coefficient and 𝑟 is a random number in the range
of [0, 1]. In cyclone foraging, the manta rays follow each other and
swim around the plankton in a spiral form, making a cyclone in the
water. This phase is mimicked in two ways. To promote exploitation,
the position of each solution is updated with respect to the global best
and next manta ray by constructing a spiral equation. This phase is
mathematically expressed below:

𝑥𝑖(𝑡 + 1)

=
{

𝑥𝑏𝑒𝑠𝑡 + 𝑟 ⋅
(

𝑥best − 𝑥𝑖(𝑡)
)

+ 𝛽 ⋅
(

𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)
)

𝑖 = 1
𝑥𝑏𝑒𝑠𝑡 + 𝑟 ⋅

(

𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡)
)

+ 𝛽 ⋅
(

𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)
)

𝑖 = 2,… , 𝑁
(7)

where 𝛽 is the weight coefficient and 𝑥𝑏𝑒𝑠𝑡 is the best solution found thus
far. To promote exploration, the position of each solution is updated
with respect to a randomly selected manta ray and the next manta ray.
The mathematical formulation of this phase is presented below:

𝑥𝑖(𝑡 + 1)

=
{

𝑥𝑟𝑎𝑛𝑑 + 𝑟 ⋅
(

𝑥rand − 𝑥𝑖(𝑡)
)

+ 𝛽 ⋅
(

𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖(𝑡)
)

𝑖 = 1
𝑥𝑟𝑎𝑛𝑑 + 𝑟 ⋅

(

𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡)
)

+ 𝛽 ⋅
(

𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑖(𝑡)
)

𝑖 = 2,… , 𝑁
(8)

where 𝑥𝑟𝑎𝑛𝑑 is a randomly selected solution. It is important to men-
tion here that the balance between exploration and exploitation is
accomplished by giving more time to the exploration equation in
early iterations. In contrast, the rate of selection of the other equation
increases with the number of iterations. Finally, in somersault forag-
ing, the manta rays move to and around the global best solution by
considering it as the food for updating their positions. The equation is
expressed below:

𝑥𝑑𝑖 (𝑡 + 1) = 𝑥𝑑𝑖 (𝑡) + 𝑆 ⋅
(

𝑟2 ⋅ 𝑥
𝑑
best − 𝑟3 ⋅ 𝑥

𝑑
𝑖 (𝑡)

)

, 𝑖 = 1,… , 𝑁 (9)

where 𝑟2 and 𝑟3 are two random values in the range [0, 1], 𝑆 is the
somersault factor that determines the somersault range of manta rays,
and 𝑆 = 2.

3.1.5. Marine predators algorithm (MPA)
MPA (Faramarzi et al., 2020a) is a swarm-based algorithm inspired

by Levy and Brownian movements of predators and prey in the ocean.
The algorithm comprises of three major phases: (i) position updating
of the prey when the predator moves faster than the prey, (ii) position
updating of the prey when the predator and prey both move at the
same speed, and (iii) position updating of the prey when the prey
moves faster than the predator. In phase 1, exploration is promoted
in the first 1

3 of iterations. The mathematical formulation of this phase
s formulated below:

𝑟𝑒𝑦𝑖 = 𝑝𝑟𝑒𝑦𝑖 + 𝑃 ∗ 𝑅 × 𝑅𝐵 × (𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐵 × 𝑃𝑟𝑒𝑦𝑖) (10)

here 𝑝𝑟𝑒𝑦𝑖 is the 𝑖th solution, 𝑃 is a constant and fixed at 5, 𝑅
s a random number in the range of [0, 1], × denotes elementwise
ultiplication, and 𝐸𝑙𝑖𝑡𝑒𝑖 is the 𝑖th vector from the list of elite solutions.

n phase 2, exploration as well as exploitation incorporated by mapping
he transition between exploration and exploitation in the second 1

3 of
terations. The mathematical form of this phase is expressed through
he following equation:

𝑟𝑒𝑦𝑖 = 𝑝𝑟𝑒𝑦𝑖 + 𝑃 ∗ 𝑅 × 𝑅𝐿 × (𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐿 × 𝑃𝑟𝑒𝑦𝑖) (11)

𝑟𝑒𝑦 = 𝐸𝑙𝑙𝑖𝑡𝑒 + 𝑃 ∗ 𝐶𝐹 × 𝑅 × (𝐸𝑙𝑖𝑡𝑒 − 𝑅 × 𝑃𝑟𝑒𝑦 ) (12)
𝑖 𝑖 𝐵 𝑖 𝐵 𝑖

8

here the former equation is used to update the first half of the popu-
ation and the latter is used to update the second half of the population.
n the above equations, 𝑅𝐿 is a vector that is generated randomly using
he Levy flight distribution, while 𝐶𝐹 adaptively regulate the motion
f the predator. Finally, phase 3 emphasizes exploitation in the last 1

3
of the iterations and is formulated as follows:

𝑝𝑟𝑒𝑦𝑖 = 𝐸𝑙𝑙𝑖𝑡𝑒𝑖 + 𝑃 ∗ 𝐶𝐹 × 𝑅𝐿 × (𝑅𝐿 × 𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐵) (13)

The predator performs a different type of movement in each phase.
Moreover, the idea of FAD’s effect is incorporated to enable solutions
to take longer jumps to escape the local optima. Finally, the concept of
marine memory is used to allow a solution to update its position only
if it has improved compared to its previous position.

3.1.6. Mayfly algorithm (MA)
MA (Zervoudakis and Tsafarakis, 2020) is a swarm-based algorithm

inspired by the flight and mating behaviours of mayflies. The position
of each mayfly in the search space is considered a candidate solution.
The population is subdivided into two groups: male mayflies and female
mayflies. The algorithm comprises three phases: movement of male
mayflies, movement of female mayflies, and mating of mayflies. The
movement of male mayflies is determined by the difference of current
fitness of the male mayfly and his best historical fitness. If his current
fitness is better, then the following equation is used to update the
velocity of the male mayfly.

𝑣𝑖(𝑡 + 1) = 𝑔 ⋅ 𝑣𝑖(𝑡) + 𝑎1 exp
𝛽𝑟2𝑝 [𝑥ℎ𝑖 − 𝑥𝑖(𝑡)] + 𝑎2 exp

𝛽𝑟2𝑔 [𝑥𝑔 − 𝑥𝑖(𝑡)] (14)

where 𝑔 is a variable whose value drops linearly from highest to lowest.
The values are balanced using three constants: 𝛼1, 𝛼2, and 𝛽. The two
ariables 𝑟𝑝 and 𝑟𝑔 are used to indicate the Cartesian distance between

solution’s current position and previous best position. In contrast, if
the current fitness is not better, then the following equation is used
to update the velocity.

𝑣𝑖(𝑡 + 1) = 𝑔 ⋅ 𝑣𝑖(𝑡) + 𝑑 ⋅ 𝑟1 (15)

here 𝑟1 is randomly generated in the range [−1, 1]. The movement
f female mayflies is mapped by attracting female mayflies towards
ale mayflies, which is again formulated in two ways depending on

he relative fitness of the female mayfly.

𝑖(𝑡 + 1) = 𝑔 ⋅ 𝑣𝑖(𝑡) + 𝑎3 exp
𝛽𝑟2𝑚𝑓 [𝑥𝑖(𝑡)] − [𝑦𝑖(𝑡)] (16)

here 𝑎3 is a constant and 𝑟𝑚 represents the Cartesian distance. If the
itness of the female mayfly is not better, then the following equation
s used to update the velocity.

𝑖(𝑡 + 1) = 𝑔 ⋅ 𝑣𝑖(𝑡) + 𝑓𝑙 ⋅ 𝑟2 (17)

here 𝑟2 is a randomly generated value in the range of [−1, 1]. Finally,
he matting phase is accomplished by performing a crossover among a
ale mayfly, and a female mayfly selected randomly or based on their

itness. The authors incorporated a few modifications, such as limiting
elocity, adding a gravity coefficient, reducing nuptial dances and ran-
om walks, and mutating offspring to handle premature convergence
nd stability issues.

.1.7. Parasitism – Predation algorithm (PPA)
PPA (Mohamed et al., 2020) is inspired by the interaction between

he predator (cats), the parasite (cuckoos), and the host (crows) in
he crow–cuckoo–cat system model. PPA is designed to preserve the
trengths and overcome the weaknesses of cat swarm optimization
CSO) (Chu et al., 2006), cuckoo search (CS) (Yang and Deb, 2009), and
he crow search algorithm (CSA) (Askarzadeh, 2016). This algorithm
omprises three main phases: the nesting phase, parasitism phase,
nd predation phase. The nesting phase, also called the crow’s phase,
romotes exploration. Crows (candidate solutions) fly from one state
o the other and update their positions based on randomly selected
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crows by using Levy flight. The mathematical formulation of this phase
is given below:

𝑋𝑡+1
𝑖 = 𝑋𝑡

𝑖 + 𝐹 (𝑋𝑟1 −𝑋𝑡
𝑖 ) (18)

where 𝑋𝑟1 is a randomly selected crow and 𝐹 is a step size computed
through the Levy flight distribution. In the parasitism phase, also
called the crow–cuckoo phase, some nests (solutions) selected through
a roulette wheel are replaced with new nests, whereas new nests are
constructed by utilizing two random solutions. The equation for this
phase is given below:

𝑋𝑐𝑢𝑐𝑘𝑜𝑜
𝑖,𝑛𝑒𝑤 = 𝑋𝑐𝑢𝑐𝑘𝑜𝑜

𝑖,𝑜𝑙𝑑 + 𝑆𝐺 ⋅𝐾 (19)

where 𝑋𝑐𝑢𝑐𝑘𝑜𝑜
𝑖,𝑜𝑙𝑑 is chosen through a roulette wheel, 𝑆𝐺 is step size

generated through a uniform Gaussian distribution, and 𝐾 is a random
binary matrix. In the predation phase, also called the crow–cat phase,
cats search nonparasitized nests. The movement of cats is mimicked by
updating the velocities of the cats by utilizing the best solution and
updating the positions based on the updated velocities. The equations
to update the velocities and positions are given below:

𝑣𝑘,𝑑 = 𝑣𝑘,𝑑 + 𝑟 ⋅ 𝑐 ⋅ (𝑥𝑏𝑒𝑠𝑡,𝑑 − 𝑥𝑘,𝑑 ) (20)

where 𝑥𝑏𝑒𝑠𝑡,𝑑 denotes the best cat position and 𝑣𝑘,𝑑 denotes the velocity
of the cat. Once the velocity is updated, the final position is updated
as follows:

𝑥𝑘,𝑑 = 𝑥𝑘,𝑑 + 𝑣𝑘,𝑑 (21)

All three phases run sequentially to balance exploration and exploita-
tion.

3.1.8. Red deer algorithm (RDA)
RDA (Fathollahi-Fard et al., 2020) is inspired by the mating be-

haviour of red deer in the breeding season. In this algorithm, a deer
is considered a candidate solution, and the whole population is di-
vided into two groups: males and hinds. Males are comparatively
better solutions than hinds. The algorithm involves 7 steps: roar, select
commander, fight between commanders and stags, form harems, mate
commanders, mate stags, and select the next generation. In the roar
phase, males randomly update their positions. In the commander selec-
tion phase, 𝛾% of males are selected as commanders, and the remaining
males are stags. The fight between commanders and stags is mimicked
through the position-updating equations presented below:

𝑛𝑒𝑤1 = (𝐶 + 𝑆)∕2 + 𝑏1((𝑈𝐵 − 𝐿𝐵) ∗ 𝑏2 + 𝐿𝐵) (22)

𝑛𝑒𝑤2 = (𝐶 + 𝑆)∕2 − 𝑏1((𝑈𝐵 − 𝐿𝐵) ∗ 𝑏2 + 𝐿𝐵) (23)

where 𝑛𝑒𝑤1 and 𝑛𝑒𝑤2 are two new solutions that are produced as a
result of the fight. In above equations, 𝐶 is the commander solution
and 𝑆 denotes the stags. Moreover, 𝑏1 and 𝑏2 are random numbers
that are generated in the range of [0, 1] through uniform distribution.
In the harem formation phase, hinds are grouped together based on
the strength of their commander. The mating phase is mapped by an
equation involving a commander and a selected hind from the same
group and a different group. The mating process is formulated in the
following equation:

𝑜𝑓𝑓𝑠 = 𝐶 +𝐻𝑖𝑛𝑑
2

+ (𝑈𝐵 − 𝐿𝐵) × 𝑐 (24)

n the stag mating phase, each stag mates with the hind closest to it.
inally, the next generation is selected. Exploration is incorporated in
he harem formation and commander mating phases. Exploitation is
chieved in the roar, commander selection, fight between commanders
nd stags, and stag mating phases. The local optima are escaped
hrough the next generation selection.
9

.1.9. Slime mould algorithm (SMA)
SMA (Li et al., 2020) is a swarm-based algorithm inspired by the

scillation mode of slime mould (a kind of fungus) in nature. Each
andidate solution corresponds to a unique location of the slime mould.
he algorithm maps three behaviours of slime mould: (i) approaching
ood, (ii) wrapping the food, and (iii) oscillation. The slime mould ap-
roaches food by following its odour in the air, for which a smell index
s calculated. With the help of two randomly selected solutions and the
est solution, the positions of current search agents are updated, which
s expressed through the following equation:

⃗(𝑡 + 1) =

{

⃖⃖⃖⃗𝑆𝑏(𝑡) + ⃖⃖⃖⃗𝑣𝑏 ∗
(

𝑊⃗ ∗ ⃖⃖⃖⃖⃗𝑆𝐴(𝑡) − ⃖⃖⃖⃖⃗𝑆𝐵(𝑡)
)

, 𝑟 < 𝑝
⃖⃖⃖⃖⃗𝑣𝐶 ∗ 𝑆(𝑡), 𝑟 ≥ 𝑝

(25)

here the current position of the slime mould is denoted by 𝑆(𝑡), 𝑆𝐴(𝑡)
nd 𝑆𝑏(𝑡) are two randomly selected solutions, and 𝑆𝑏(𝑡) contains the
ost concentrated odour. Moreover, 𝑊 is the slime mould weight, 𝑣𝑏

nd 𝑣𝑐 are self-adaptive parameters, 𝑟 is generated randomly in the
ange [0, 1], and 𝑝 is computed as 𝑝 = tanh(|𝑓 (𝑖) −𝐷𝐹 |), where 𝑓 is the

fitness of the current solution and 𝐷𝐹 is the fitness of the best solution.
Exploration occurs in the approaching the food phase, and exploitation
comes from the wrapping the food phase. The transition among both
phases is controlled through the parameters.

3.1.10. Tunicate swarm algorithm (TSA)
TSA (Kaur et al., 2020) is inspired by jet propulsion and swarm

behaviours of tunicates during navigation and foraging. The best so-
lution is considered the food source, and in the jet propulsion phase,
the tunicates (search agents) update their position with respect to the
best solution because the objective is to keep the solutions close to the
best solution. The mathematical equation to formulate this behaviour
is given below:

𝑃𝑝(𝑥) =

{

𝑋best + 𝐴 ⋅ 𝑃𝐷, if 𝑟rand ≥ 0.5
𝑋best − 𝐴 ⋅ 𝑃𝐷, if 𝑟rand < 0.5

(26)

where 𝑋𝑏𝑒𝑠𝑡 is the best solution, and 𝑃𝐷 is computed as follows:

𝑃𝐷 = |𝑋𝑏𝑒𝑠𝑡 − 𝑟𝑟𝑎𝑛𝑑 ⋅ 𝑃𝑝(𝑥)| (27)

here 𝑃 − 𝑝 is the position of the tunicate being updated and 𝑟𝑟𝑎𝑛𝑑 is a
andom number in the range [0, 1]. However, in the swarm behaviour
hase, each search agent other than the first search agent updates its
osition by taking the mean of its position updated in the jet propulsion
hase and the position of the previous search agent in the swarm. This
ehaviour is formulated in the following equation:

𝑝(𝑥⃗ + 1) =
𝑃𝑝(𝑥) + 𝑃𝑝(𝑥⃗ + 1)

2 + 𝑐1
(28)

Exploration and exploitation are controlled through the parameters.

3.2. Math/physics-based algorithms

3.2.1. Archimedes optimization algorithm (AOA)
AOA (Hashim et al., 2020) is a physics-based algorithm inspired

by Archimedes’ principle, in which an immersed object is considered
a candidate solution. A population of objects along with densities,
volumes, and accelerations are randomly initialized. The algorithm
comprises several steps. In step 1, the densities and volumes of the
objects are updated by using the following equations.

𝑑𝑒𝑛𝑡+1𝑖 = 𝑑𝑒𝑛𝑡𝑖 + 𝑟𝑎𝑛𝑑 × (𝑑𝑒𝑛𝑏𝑒𝑠𝑡 − 𝑑𝑒𝑛𝑡𝑖) (29)

𝑣𝑜𝑙𝑡+1𝑖 = 𝑣𝑜𝑙𝑡𝑖 + 𝑟𝑎𝑛𝑑 × (𝑣𝑜𝑙𝑏𝑒𝑠𝑡 − 𝑣𝑜𝑙𝑡𝑖) (30)

where 𝑑𝑒𝑛𝑏𝑒𝑠𝑡 and 𝑣𝑜𝑙𝑏𝑒𝑠𝑡 are the densities and volumes of the best solu-
tion found thus far. In step 2, two operators, the transfer operator and
density decreasing factor, are calculated. The density decreasing factor
helps to incorporate exploration, and the transfer operator controls the
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transition from exploration to exploitation. In step 3, the acceleration
of each object is updated either by considering the collision with a
random material or no collision with any object. In the exploration
phase, it is assumed that the objects collide. In the exploitation phase,
it is assumed that the objects do not collide. In step 4, the accelerations
are normalized, and the positions of the objects are updated either
with reference to a randomly selected object (exploration phase) or the
global best object (exploitation phase) by using the following equations:

𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 + 𝐶1 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑡+1𝑖−𝑛𝑜𝑟𝑚 × 𝑑 × (𝑥𝑟𝑎𝑛𝑑 − 𝑥𝑡𝑖) (31)

𝑥𝑡+1𝑖 = 𝑥𝑏𝑒𝑠𝑡
𝑡 + 𝐹 × 𝐶2 × 𝑟𝑎𝑛𝑑 × 𝑎𝑐𝑐𝑡+1𝑖−𝑛𝑜𝑟𝑚 × 𝑑 × (𝑇 × 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑡𝑖) (32)

here 𝐶1 is a constant with a value of 2 and 𝐶2 is a constant with a
alue of 6. Moreover, 𝑎𝑐𝑐𝑖 is the acceleration of the current solution, 𝑑
s the density decreasing factor, and 𝑟𝑎𝑛𝑑 is a random number in the
ange [0, 1].

.2.2. Equilibrium optimizer (EO)
EO (Faramarzi et al., 2020b) is a physics-based meta-heuristic in-

pired by the control volume mass balance models used to estimate
oth dynamic and equilibrium states. The particles are considered
olutions, and their positions map the concentration of the particles. In
his algorithm, an equilibrium pool of five reference solutions (four best
o-far particles and the arithmetic mean of them) called equilibrium
andidates is constructed. The equilibrium pool is formulated below:

⃖⃖⃗ 𝑒,𝑝𝑜𝑜𝑙 = { ⃖⃖⃗𝑋𝑒(1), ⃖⃖⃗𝑋𝑒(2), ⃖⃖⃗𝑋𝑒(3), ⃖⃖⃗𝑋𝑒(4), ⃖⃖⃗𝑋𝑒(𝑎𝑣𝑒)} (33)

Each particle updates its position in reference to a randomly selected
candidate from the pool. The algorithm contains two carefully designed
parameters called the exponential term (𝐸) and generation rate (𝐺) that
are computed below:

⃖⃖⃗𝐸 = 𝑒−𝜆⃗(𝑡−𝑡0) (34)

where 𝑡 and 𝑡0 are computed as:

𝑡 = (1 − 𝐼𝑡𝑒𝑟
𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 )

(𝑎2
𝐼𝑡𝑒𝑟

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 ) (35)

0 =
1
⃖⃗𝜆
ln(−𝑎1𝑠𝑖𝑔𝑛(𝑟⃗ − 0.5)[1 − 𝑒−𝜆⃗𝑡]) + 𝑡 (36)

By combining the above equations, the final equation for 𝐸 is given
elow:

⃖⃖⃗ = −𝑎1𝑠𝑖𝑔𝑛(𝑟⃗ − 0.5)[𝑒−𝜆⃗𝑡 − 1] (37)

oreover, the concept of memory saving, which allows a solution to
pdate its concentration only if it is improved as compared to the
revious concentration, is implemented. The final position updating
quation of EO is presented below:

⃖⃖⃗ = ⃖⃖⃗𝑋𝑒𝑞 + ( ⃖⃖⃗𝑋 − ⃖⃖⃗𝑋𝑒𝑞) ⋅ ⃖⃖⃗𝐸 +
⃖⃖⃗𝑅
⃖⃗𝜆𝑉

(1 − ⃖⃖⃗𝐸) (38)

Exploration, exploitation, and their balance are controlled through the
following parameters: equilibrium pool and generation probability.

3.2.3. Gradient-based optimization (GBO)
GBO (Ahmadianfar et al., 2020) is inspired by Newton’s gradient

method. The algorithm involves two main phases: the gradient search
rule and the local escaping operator. Newton’s method is a root-finding
algorithm that estimates the nearby solution of the current solution
by using the Taylor series. The gradient search rule is derived by
modifying Newton’s gradient-based method to solve indifferentiable
problems. The position updating equation is presented below:

𝑥𝑚+1𝑛 = 𝑟𝑎 × (𝑟𝑏 ×𝑋1𝑚𝑛 + (1 − 𝑟𝑏) ×𝑋2𝑚𝑛 ) + (1 − 𝑟𝑎) ×𝑋3𝑚𝑛 (39)

where 𝑟𝑎 and 𝑟𝑏 are random numbers. To enhance the performance
of GBO and deal with complex problems, a local escaping operator is
 c

10
introduced, which utilizes the best solution and five other solutions.
The mathematical formulation of this operator is given below:

𝑋𝑚
𝐿𝐸𝑂 = 𝑋𝑚+1

𝑛 + 𝑓1(𝑢1𝑥𝑏𝑒𝑠𝑡 − 𝑢2𝑥
𝑚
𝑘 ) + 𝑓2𝑝1(𝑢3(𝑥2𝑚𝑛 − 𝑥1𝑚𝑛 )) + 𝑢2(𝑥𝑚𝑟1 − 𝑥𝑚𝑟2)∕2

(40)

where 𝑢1, 𝑢2, and 𝑢3 are randomly generated values. Furthermore,
𝑓1 and 𝑓2 are also random numbers and can have values of either
1 or −1. The gradient search rule incorporates both exploration and
exploitation through two different equations; however, the balance
between exploration and exploitation is attained by modifying this rule
through a random parameter 𝑝1.

3.2.4. Transient search optimization (TSO)
TSO (Qais et al., 2020) is a physics-based algorithm inspired by

the transient behaviour of switched electrical circuits. These electrical
circuits can be either first-order circuits (containing a single storing
component) or second-order circuits (containing two storage elements).
Differential equations to compute the transient responses of both types
of circuits are used to derive the position updating equations for the
candidate solutions. Each candidate solution (a state of the circuit)
updates its position with respect to the best solution (steady-state or
final value of the circuit) according to one of the two equations derived
for both circuits. The first-order equation incorporates exploitation,
and the second-order equation promotes exploration. The second order
equation is formulated below:

𝑋(𝑡 + 1) = 𝑋∗(𝑡) + 𝑒−𝑡[cos(2𝜋𝑇 ) + sin(2𝜋𝑇 )]|𝑋(𝑡) − 𝐶1𝑋
∗(𝑡)| (41)

where 𝑋(𝑡) denotes current position, 𝑋(𝑡 + 1) denotes the updated
osition, 𝑋∗(𝑡) is the global best position, 𝑇 is a random coefficient
nd computed as 𝑇 = 2 × 𝑧 × 𝑟1 − 𝑧, and 𝐶1 is a random coefficient
nd computed as 𝐶1 = 𝑘 × 𝑧 × 𝑟2 + 1. On the other hand, the first-order
quation is formulated as follows:

(𝑡 + 1) = 𝑋∗(𝑡) + [𝑋(𝑡) − 𝐶1 ⋅𝑋
∗(𝑡)] ⋅ 𝑒−𝑇 (42)

he balance between exploration and exploitation is attained through
arameter 𝑇 .

.2.5. Turbulent flow of water-based optimization (TFWO)
TFWO (Ghasemi et al., 2020) is a physics-based algorithm inspired

y the behaviour of whirlpools created in water due to turbulent flow.
n this algorithm, the population is divided into several groups. The best
olution of each group is treated as a whirlpool. The other solutions in
he group are considered objects that are rotating around the whirlpool
ole in a spiral fashion. The algorithm calculates two forces on an
bject to update its position. The first force is the centripetal force,
hich causes the object to be pulled down towards the centre of

he whirlpool. The second force is the centrifugal force, which works
gainst the centripetal force to pull objects away from the whirlpool
entre. Moreover, the interaction between whirlpools is also mimicked
o that whirlpools update their positions concerning other whirlpools.
his interaction is mathematically formulated below:

𝑋𝑖 = (cos(𝛿𝑛𝑒𝑤𝑖 ) ∗ 𝑟𝑎𝑛𝑑(1, 𝐷) ∗ (𝑊 ℎ𝑓 −𝑋𝑖)

− sin(𝛿𝑛𝑒𝑤𝑖 ) ∗ 𝑟𝑎𝑛𝑑(1, 𝐷) ∗ (𝑊 ℎ𝑤 −𝑋𝑖))

∗ (1 + | cos(𝛿𝑛𝑒𝑤𝑖 ) − sin(𝛿𝑛𝑒𝑤𝑖 )|) (43)

𝑛𝑒𝑤
𝑖 = 𝑊 ℎ𝑗 − 𝛥𝑋𝑖 (44)

here 𝛿𝑖 is the angle of the 𝑖th object and 𝑊 ℎ𝑤 and 𝑊 ℎ𝑓 are two
hirlpools. In the original paper, a discussion on how the algorithm
eets optimization challenges is not presented; however, according

o the best of our understanding, the centripetal force incorporates
xploitation, centrifugal force promotes exploration, and convergence

omes from the interaction among the whirlpools.
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3.2.6. Artificial electric field algorithm (AEFA)
AEFA (Yadav et al., 2020) is inspired by Coulomb’s law of electro-

static force between charged particles and Newton’s law of motion.
According to Coulomb’s law, there is an electrostatic force between
two charged particles that is directly proportional to the product of the
charge on those particles and inversely proportional to their squared
distance. This force can be attractive or repulsive. However, AEFA
considers the attractive force only. In AEFA, each charged particle
is considered a candidate solution whose charge is computed from
its fitness. The force between the charged particles is computed and
then used to calculate the acceleration of a particle. The total elec-
trostatic force acting on particle 𝑖 is calculated by using the following
equation:

𝐹 𝑑
𝑖 (𝑡) =

𝑁
∑

𝑗=1,𝑗≠𝑖
𝑟𝑎𝑛𝑑()𝐹 𝑑

𝑖𝑗 (𝑡) (45)

where 𝐹𝑖 is the resultant force, 𝑟𝑎𝑛𝑑() gives a random number in the
range [0, 1], 𝑁 is the total number of particles, and 𝐹 𝑑

𝑖𝑗 (𝑡) is the
force acting on charge 𝑖 from charge 𝑗. By using the total force, the
acceleration of the 𝑖th particle is computed by using the following
equation:

𝑎𝑑𝑖 (𝑡) =
𝐹 𝑑
𝑖 (𝑡)

𝑀𝑖(𝑡)
(46)

where 𝑀𝑖(𝑡) is the mass of the 𝑖th particle at time 𝑡. Acceleration is used
to find the velocity based on the following equation:

𝑉 𝑑
𝑖 (𝑡 + 1) = 𝑟𝑎𝑛𝑑() ∗ 𝑉 𝑑

𝑖 (𝑡) + 𝑎𝑑𝑖 (𝑡) (47)

Once the velocity is updated, the current position can be updated by
adding the updated velocity into the current position by using the
following equation:

𝑋𝑑
𝑖 (𝑡 + 1) = 𝑋𝑑

𝑖 (𝑡) + 𝑉 𝑑
𝑖 (𝑡 + 1) (48)

3.2.7. Balancing composite motion optimization (BCMO)
BCMO (Le-Duc et al., 2020) is a population-based metaheuristic

algorithm that works by balancing the composite motion properties
of individuals in the solution space. Equalizing the global and lo-
cal searches via a probabilistic selection model creates a movement
mechanism for each individual. The steps include initializing of the
search space and determining of the instant global point, best indi-
vidual, and the composite motions of individuals in solution space.
The position-updating equation of the candidate solution is formulated
below:

𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 + 𝑣𝑖∕𝑗 + 𝑣𝑗 (49)

where 𝑣𝑖∕𝑗 and 𝑣𝑗 are computed as follows:

𝑖∕𝑗 = 𝛼𝑖𝑗 (𝑥𝑗 − 𝑥𝑖) (50)

𝑣𝑗 = 𝛼𝑗 (𝑥𝑜𝑖𝑛 − 𝑥𝑗 ) (51)

In the above equations, 𝛼𝑖𝑗 and 𝛼𝑗 are computed using the following
quations.

𝑗 = 𝐿𝐺𝑆 × 𝑑𝑣𝑗 (52)

𝑖𝑗 = 𝐿𝐿𝑆 × 𝑑𝑣𝑖𝑗 (53)

here 𝐿𝐺𝑆 is a global step size scaling the movement of the 𝑗th
ndividual, 𝐿𝐿𝑆 can be fixed at 1 and 𝑑𝑣𝑖𝑗 is the direction vector
etween 𝑖th and 𝑗th individuals. The mathematical model based on
andom tests is built to control the movement trends of candidate so-
utions, which probabilistically equalizes and balances the exploration
nd exploitation capabilities of each individual.
11
3.3. Human social interaction-based algorithms

3.3.1. Forensic-based investigation (FBI)
FBI (Chou and Nguyen, 2020) is inspired by the suspect

investigation–location–pursuit process. The forensic investigation pro-
cess involves five steps: opening the case, interpreting the findings,
directing the inquiry, taking action, and prosecuting the case. The sus-
pected location is considered a candidate solution in the investigation
phase, and the location of the police agent is treated as the candidate
solution in the pursuit phase. The investigation phase involves two
steps: (i) interpretation of the findings, in which a solution updates
its position with reference to the average of two randomly selected
solutions (suspected locations), and (ii) direction of inquiry, in which
the solution updates its position with respect to the global best and
three randomly selected solutions (suspected locations). The first step
is mathematically formulated as follows:

𝑋𝑖𝑗 = 𝑋𝑖𝑗 + ((𝑟𝑎𝑛𝑑1 − 0.5) × 2) × (𝑋𝑖𝑗 − (𝑋𝑘𝑗 +𝑋ℎ𝑗 )∕2) (54)

where 𝑘, ℎ, and 𝑖 are three suspected locations. Moreover, ((𝑟𝑎𝑛𝑑1 −
.5) × 2) generates a random number in the range [−1, 1]. Similarly,
he second step is formulated by using the following equation:

𝑖𝑗 = 𝑋𝑏𝑒𝑠𝑡 +𝑋𝑑𝑗 + 𝑟𝑎𝑛𝑑5 × (𝑋𝑒𝑗 −𝑋𝑓𝑗 ) (55)

here 𝑑, 𝑒, 𝑓 , and 𝑖 are four suspected positions. In addition, the pursuit
hase is a combination of two steps. In the first step, called actions, the
olutions (police agent locations) update their positions with respect
o the global best, and in the second step, the solution (police agent
ocation) updates its position with respect to the global best and
wo randomly selected police agents. The first step is mathematically
ormulated below:

𝑖𝑗 = 𝑟𝑎𝑛𝑑6 ×𝑋𝑖𝑗 + 𝑟𝑎𝑛𝑑7 × (𝑋𝑏𝑒𝑠𝑡 −𝑋𝑖𝑗 ) (56)

nd the second step is formulated by using the following equation:

𝑖𝑗 = 𝑋𝑟𝑗 + 𝑟𝑎𝑛𝑑8 × (𝑋𝑟𝑗 −𝑋𝑖𝑗 ) + 𝑟𝑎𝑛𝑑9 × (𝑋𝑏𝑒𝑠𝑡 −𝑋𝑟𝑗 ) (57)

here all 𝑟𝑎𝑛𝑑𝑖’s are random numbers, and 𝑟 and 𝑖 are two police loca-
ions. To meet the optimization challenges, the investigation phase in-
orporates exploration, the pursuit phase incorporates exploitation, and
he balance among both challenges is attained through the execution of
oth phases in a row.

.3.2. Giza pyramids construction (GPC)
GPC (Harifi et al., 2020) is a human social interaction-based algo-

ithm inspired by the movement of stones on a ramp by workers to
onstruct polynomials. The authors claimed that GPC, which is inspired
y the ancient past, is the first of its kind. The population comprises
orkers and the locations of the stones. Equations are derived to

ompute the displacement of stones and the amount of movement
equired by the workers to update the position of the solution. The
umber of stone blocks displaced is calculated by using the following
quation:

=
𝑣20

2𝑔(sin 𝜃 + 𝜇𝑘 cos 𝜃)
(58)

here 𝑣0 is the initial velocity, 𝑔 is the gravity constant, and 𝜇𝑘 is the
oefficient of kinetic friction between the stone block and the ramp.
he number of movements performed by the worker is computed as
ollows:

=
𝑣20

2 𝑔 sin 𝜃
(59)

Using the above equations, the position of a solution is updated using
the following equation:

𝑝 = (𝑝 + 𝑑) × 𝑥𝜖 (60)
𝑖 𝑖
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Moreover, GPC maps the concept of worker substitution by using a uni-
form crossover technique in which 50% of old solutions are substituted
by randomly selected new solutions. In this paper, the role of different
phases or parameters in relation to meeting optimization challenges is
not explicitly discussed; however, it is stated that worker substitution
balances exploration and exploitation.

3.3.3. Heap-based optimizer (HBO)
HBO (Askari et al., 2020a) is a human social behaviour-inspired

algorithm that maps the concept of corporate rank hierarchy and
interactions among individuals in the hierarchy. In this algorithm,
the solutions are arranged in a 3-ary heap based on their fitness.
The algorithm comprises three phases: interaction with the individ-
ual boss, interaction among colleagues, and self-contribution of an
employee. Position updating equations are derived for all phases and
are then combined into a single equation by using carefully designed
probabilistic parameters, as formulated below:

𝑥𝑘𝑖 (𝑡 + 1)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑘𝑖 (𝑡), 𝑝 ≤ 𝑝1
𝐵𝑘 + 𝛾 𝜆𝑘|𝐵𝑘 − 𝑥𝑘𝑖 (𝑡)|, 𝑝 > 𝑝1 𝑎𝑛𝑑 𝑝 ≤ 𝑝2
𝑆𝑘
𝑟 + 𝛾 𝜆𝑘|𝑆𝑘

𝑟 − 𝑥𝑘𝑖 (𝑡)|, 𝑝 > 𝑝2 𝑎𝑛𝑑 𝑝 ≤ 𝑝3 𝑎𝑛𝑑 𝑓 (𝑆𝑟) < 𝑓 (𝑥𝑖(𝑡))
𝑥𝑘𝑖 + 𝛾 𝜆𝑘|𝑆𝑘

𝑟 − 𝑥𝑘𝑖 (𝑡)|, 𝑝 > 𝑝2 𝑎𝑛𝑑 𝑝 ≤ 𝑝3 𝑎𝑛𝑑 𝑓 (𝑆𝑟) ≥ 𝑓 (𝑥𝑖(𝑡))

(61)

here 𝑥 is the current solution, 𝐵 is the immediate boss of 𝑥, 𝑆 is the
andomly chosen colleague of 𝑥, and 𝛾 and 𝜆 are computed using the

following equations:

𝛾 = |2 −
(𝑡 𝑚𝑜𝑑 𝑇

𝐶 )
𝑇
4𝐶

| (62)

𝜆𝑘 = 2 𝑟 − 1 (63)

In the above equations, 𝑇 denotes total number of iterations, 𝑟 is a ran-
dom number in the range [0, 1], and 𝐶 = ⌊𝑇 ∕25⌋. The self-contribution
phase incorporates exploration, interaction with colleagues promotes
exploitation, and interaction with the immediate boss leads the pop-
ulation to convergence. Exploration and exploitation are balanced
through the probabilistic parameters that give more priority to the self-
contribution phase in early iterations and increase the rate of selection
of the other two equations through iterations.

3.3.4. Political optimizer (PO)
PO (Askari et al., 2020b) is inspired by a multiparty political

system. A political member is considered a candidate solution, and
the prestige of the political member is treated as the fitness of the
solution. The population is subdivided into political parties, and a
political party comprises candidate solutions. The algorithm has several
phases, such as party formation and constituency allocation, election
campaigns, party switching, interparty elections, government forma-
tion, and parliamentary affairs. The main position updating mechanism
of the algorithm is implemented in the election campaign phase by
using the following equations:

𝑝𝑗𝑖,𝑘(𝑡 + 1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

𝑚∗ + 𝑟(𝑚∗ − 𝑝𝑗𝑖,𝑘(𝑡)),
if 𝑝𝑗𝑖,𝑘(𝑡 − 1) ≤ 𝑝𝑗𝑖,𝑘(𝑡) ≤ 𝑚∗ or 𝑝𝑗𝑖,𝑘(𝑡 − 1) ≥ 𝑝𝑗𝑖,𝑘(𝑡) ≥ 𝑚∗

𝑚∗ + (2𝑟 − 1)|𝑚∗ − 𝑝𝑗𝑖,𝑘(𝑡)|,
if 𝑝𝑗𝑖,𝑘(𝑡 − 1) ≤ 𝑚∗ ≤ 𝑝𝑗𝑖,𝑘(𝑡) or 𝑝𝑗𝑖,𝑘(𝑡 − 1) ≥ 𝑚∗ ≥ 𝑝𝑗𝑖,𝑘(𝑡)

𝑚∗ + (2𝑟 − 1)|𝑚∗ − 𝑝𝑗𝑖,𝑘(𝑡 − 1)|,
∗ 𝑗 𝑗 ∗ 𝑗 𝑗

(64)
⎩

if 𝑚 ≤ 𝑝𝑖,𝑘(𝑡 − 1) ≤ 𝑝𝑖,𝑘(𝑡) or 𝑚 ≥ 𝑝𝑖,𝑘(𝑡 − 1) ≥ 𝑝𝑖,𝑘(𝑡)
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𝑝𝑗𝑖,𝑘(𝑡 + 1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑚∗ + (2𝑟 − 1)|𝑚∗ − 𝑝𝑗𝑖,𝑘(𝑡)|,
if 𝑝𝑗𝑖,𝑘(𝑡 − 1) ≤ 𝑝𝑗𝑖,𝑘(𝑡) ≤ 𝑚∗ or 𝑝𝑗𝑖,𝑘(𝑡 − 1) ≥ 𝑝𝑗𝑖,𝑘(𝑡) ≥ 𝑚∗

𝑝𝑗𝑖,𝑘(𝑡 − 1) + 𝑟(𝑝𝑗𝑖,𝑘(𝑡) − 𝑝𝑗𝑖,𝑘(𝑡 − 1)),
if 𝑝𝑗𝑖,𝑘(𝑡 − 1) ≤ 𝑚∗ ≤ 𝑝𝑗𝑖,𝑘(𝑡) or 𝑝𝑗𝑖,𝑘(𝑡 − 1) ≥ 𝑚∗ ≥ 𝑝𝑗𝑖,𝑘(𝑡)

𝑚∗ + (2𝑟 − 1)|𝑚∗ − 𝑝𝑗𝑖,𝑘(𝑡 − 1)|,
if 𝑚∗ ≤ 𝑝𝑗𝑖,𝑘(𝑡 − 1) ≤ 𝑝𝑗𝑖,𝑘(𝑡) or 𝑚∗ ≥ 𝑝𝑗𝑖,𝑘(𝑡 − 1) ≥ 𝑝𝑗𝑖,𝑘(𝑡)

(65)

where 𝑡 denotes the current iteration, 𝑡 − 1 denotes the previous itera-
tion, 𝑚 can either be the party leader or constituency winner, and 𝑝𝑗𝑘
denotes the 𝑘th dimension of the 𝑗th member of the 𝑖th political party.
The former equation is used when the current fitness of the member
is better than its previous fitness, while the latter equation is used to
update the position. Two unique features of PO are a logical division
of the population to assign a dual role to each candidate solution
and utilization of recent positions of the candidates to update their
positions. Position updating with respect to the area winner and party
leader incorporates exploration and exploitation, the balance between
exploration and exploitation is attained through party switching, and
convergence is assured through parliamentary affairs.

3.3.5. Search and rescue optimization algorithm (SROA)
SROA (Shabani et al., 2020) is a human social interaction-based

algorithm inspired by the exploratory behaviour of humans during a
search and rescue operation. In this algorithm, an individual human
is considered a candidate solution. The population of 𝑁 humans and
𝑁 clues is randomly initialized. A clue is also a candidate solution that
points out the promising area to search for. The algorithm involves two
main phases: the social phase and the individual phase. In the social
phase, the position of a candidate solution (human) is updated with
reference to a randomly selected clue. If the fitness of the clue is better,
then the position is updated as follows:

𝑋𝑛𝑒𝑤
𝑖,𝑗 = 𝐶𝑘,𝑗 + 𝑟𝑖 × (𝑋𝑖,𝑗 − 𝐶𝑘,𝑗 ) (66)

Otherwise, the position is updated by using the following equation:

𝑋𝑛𝑒𝑤
𝑖,𝑗 = 𝑋𝑖,𝑗 + 𝑟𝑖 × (𝑋𝑖,𝑗 − 𝐶𝑘,𝑗 ) (67)

where 𝑟𝑖 is a random number, 𝐶𝑘,𝑗 is the randomly selected clue, and
𝑋𝑖,𝑗 is the candidate solution. In the individual phase, the solution
updates its position with reference to two randomly selected clues by
using the following equation:

𝑋𝑛𝑒𝑤
𝑖 = 𝑋𝑖 + 𝑟3 × (𝐶𝑘 − 𝐶𝑚) (68)

where 𝑘 and 𝑚 are two random numbers in the range [1, 2𝑁]. The
individual phase mimics the idea of connecting the clues to search
around the solution’s own vicinity. There are a few other auxiliary
phases, such as boundary controlling to push the solutions back to the
feasible region, updating the solution and clue matrices based on the
new position of the solution, abandoning clues to stop searching less
significant areas, and restarting the strategy to regenerate matrices if
the whole population is trapped in the local and infeasible region. The
exploration, exploitation, and transition among them are controlled
through two control parameters called 𝑆𝐸 (social effect) and 𝑀𝑈
(maximum unsuccessful search number).

3.4. Concept/process-based algorithms

3.4.1. Lévy flight distribution (LFD)
LFD (Houssein et al., 2020) is inspired by the Lévy flight random

walk to explore wireless sensor networks (WSNs). In WSNs, the distance
between two adjacent nodes is calculated to decide whether to move
the nodes or keep them in their original positions. The goal is to
cover all areas with minimum overlap. The position of each node

is considered as a candidate solution, and all nodes to be deployed



A. Alorf Engineering Applications of Artificial Intelligence 117 (2023) 105622

w
s

𝑋

T
c
t
a
f

3

b
d
i
a
T
t

𝑅

(
f

𝑅

T
s
i
t
b

Table 2
The characteristics of the unimodal benchmark functions used for exploitation analysis. 𝐹1–𝐹17 are variable-
dimensional functions, and 𝐹18–𝐹25 are fixed-dimensional functions. 𝑅𝑎𝑛𝑔𝑒 defines the lower and upper
bounds of the design variables. 𝐷𝑖𝑚 denotes the dimensionality of the search space. 𝐹𝑚𝑖𝑛 is the global
optimum value.
Function 𝑅𝑎𝑛𝑔𝑒 𝐷𝑖𝑚 𝐹𝑚𝑖𝑛

𝐹1 — Sphere [−100, 100] 50 0
𝐹2 — Quartic Noise [−1.28, 1.28] 50 0
𝐹3 — Powell Sum [−1, 1] 50 0
𝐹4 — Schwefel’s 2.20 [−100, 100] 50 0
𝐹5 — Schwefel’s 2.21 [−100, 100] 50 0
𝐹6 — Step [−100, 100] 50 0
𝐹7 — Stepint [−5.12, 5.12] 50 25 − 6𝑛
𝐹8 — Schwefel’s 1.20 [−100, 100] 50 0
𝐹9 — Schwefel’s 2.22 [−100, 100] 50 0
𝐹10 — Schwefel’s 2.23 [−10, 10] 50 0
𝐹11 — Rosenbrock [−30, 30] 50 0
𝐹12 — Brown [−1, 4] 50 0
𝐹13 — Dixon and Price [−10, 10] 50 0
𝐹14 — Powell Singular [−4, 5] 50 0
𝐹15 — Zakharov [−5, 10] 50 0
𝐹16 — Xin-She Yang [−20, 20] 50 −1
𝐹17 — Perm 0,D,Beta [−𝑑𝑖 , 𝑑𝑖] 5 0
𝐹18 — Three-Hump Camel [−5, 5] 2 0
𝐹19 — Beale [−4.5, 4.5] 2 0
𝐹20 — Booth [−10, 10] 2 0
𝐹21 — Brent [−10, 10] 2 0
𝐹22 — Matyas [−10, 10] 2 0
𝐹23 — Schaffer N. 4 [−100, 100] 2 0.29257
𝐹24 — Wayburn Seader 3 [−500, 500] 2 21.35
𝐹25 — Leon [−1.2, 1.2] 2 0
(
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represent the population. In this algorithm, two adjacent nodes are
chosen, and their Euclidean distance is computed. However, their
positions are not updated if the Euclidean distance is less than a given
threshold. In this case, one solution is either updated with respect to the
leader (node with the fewest neighbours) using the Lévy flight function
or regenerated randomly in the search space. Position updating with
respect to the leader is formulated below:

𝑋𝑗 (𝑡 + 1) = 𝐿𝑓 (𝑋𝑗 (𝑡), 𝑋𝐿, 𝐿𝑏, 𝑈𝑏) (69)

here 𝐿𝑓 represents the 𝑠𝑙 value and the LF direction. In contrast, the
olution is regenerated randomly using the following equation:

𝑗 (𝑡 + 1) = 𝐿𝑏 + (𝑈𝑏 − 𝐿𝑏)𝑟𝑑() (70)

he former promotes exploitation and later incorporates exploration. In
ontrast, the other node (solution) updates its position with reference to
he leader and global best solution according to the Lévy flight function
nd parameters such as the total target fitness of the neighbour and the
itness degree of each neighbour.

.4.2. Rain optimization algorithm (ROA)
ROA (Moazzeni and Khamehchi, 2020) is inspired by the natural

ehaviour of raindrops and the lowest land point they reach. Each rain-
rop is considered a candidate solution, and the algorithm randomly
nitializes a population of raindrops. Each raindrop is accompanied by
parameter called the radius, which determines the life of the raindrop.
he radius is computed in two ways: (i) if raindrops are too close, then
hey merge and form a large droplet, which is formulated as follows:

= (𝑟𝑛𝑖 + 𝑟𝑛2)
1∕𝑛 (71)

ii) if the droplet does not move, the radius is computed using the
ollowing equation:

= (𝛼𝑟𝑛1)
1∕𝑛 (72)

he radius is used to update the position of a solution and becomes
maller with the number of iterations. The solution keeps updating
ts position by moving in the same direction as long as the fitness of
he solution improves in each iteration. Moreover, in ROA, three other
ehaviours are mimicked: (i) merging raindrops in the same vicinity,
13
ii) removing raindrops with a radius less than a certain threshold
nd (iii) generating new raindrops. Diversity is maintained through
he introduction of new raindrops, and moving in the same direction
nhances exploitation.

. Comparative setup and results on benchmarks and engineering
roblems

In this section, we investigated the capability of recent metaheuris-
ics to meet optimization challenges such as exploration, exploitation,
nd convergence. As discussed in the previous section, to the best
f our knowledge, approximately 57 novel metaheuristics were pro-
osed and published through well-reputed journals and conferences.
e thoroughly searched MathWorks, GitHub, ResearchGate, and the
ebsites of authors to obtain the source code of these algorithms.
oreover, we contacted the corresponding authors for codes that are

ot publicly available. As a result, we collected the implementations of
6 metaheuristics, which we will analyse in this section.

.1. Experimental setup

To evaluate and analyse the optimization capabilities of the algo-
ithms, several experiments are performed. The nature of the experi-
ents is presented below:

• For exploitation analysis, 25 fixed/variable-dimensional
unimodal benchmark functions are used. The details of the bench-
marks are presented in Table 2.

• For exploration analysis, 25 fixed/variable-dimensional multi-
modal benchmark functions are used. The details of the bench-
marks are presented in Table 3.

• To investigate the capability of the metaheuristics to balance
exploration and exploitation, 29 CEC-BC-2017 benchmarks with
shifted, rotated, hybrid, and composite landscapes are used. The
characteristics of the benchmarks are presented in Table 4.

• To assess the convergence assurance, convergence speed, and
premature convergence avoidance capabilities, the convergence
curves of the top five algorithms for selected unimodal and mul-
timodal benchmarks are compared and analysed in Figs. 4 and 6,
respectively.
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Table 3
The characteristics of the multimodal benchmark functions used for exploration analysis. 𝐹26–𝐹40 are
variable-dimensional functions, and 𝐹41–𝐹50 are fixed-dimensional functions. 𝑅𝑎𝑛𝑔𝑒 defines the lower and
upper bounds of the design variables. 𝐷𝑖𝑚 denotes the dimensionality of the search space. 𝐹𝑚𝑖𝑛 is the global
optimum value.
Function 𝑅𝑎𝑛𝑔𝑒 𝐷𝑖𝑚 𝐹𝑚𝑖𝑛

𝐹26 — Schwefel’s 2.26 [−500, 500] 50 0
𝐹27 — Rastrigin [−5.12, 5.12] 50 0
𝐹28 — Periodic [−10, 10] 50 0.9
𝐹29 — Qing [−500, 500] 50 0
𝐹30 — Alpine N. 1 [−10, 10] 50 0
𝐹31 — Xin-She Yang [−5, 5] 50 0
𝐹32 — Ackley [−32, 32] 50 0
𝐹33 — Trignometric 2 [−500, 500] 50 1
𝐹34 — Salomon [−100, 100] 50 0
𝐹35 — Styblinski-Tang [−5, 5] 50 −39.16599 × 𝑛
𝐹36 — Griewank [−100, 100] 50 0
𝐹37 — Xin-She Yang N.4 [−10, 10] 50 −1
𝐹38 — Xin-She Yang N.2 [−2𝜋, 2𝜋] 50 0
𝐹39 — Gen. Penalized [−50, 50] 50 0
𝐹40 — Penalized [−50, 50] 50 0
𝐹41 — Egg crate [−5, 5] 2 0
𝐹42 — Ackley N.3 [−32, 32] 2 −195.629
𝐹43 — Adjiman [−1, 2] 2 −2.02181
𝐹44 — Bird [−2𝜋, 2𝜋] 2 −106.7645
𝐹45 — Camel Six Hump [−5, 5] 2 −1.0316
𝐹46 — Branin RCOS [−5, 10] 2 0.3978873
𝐹47 — Hartman 3 [0, 1] 3 −3.862782
𝐹48 — Hartman 6 [0, 1] 6 −3.32237
𝐹49 — Cross-in-tray [−10, 10] 2 −2.06261218
𝐹50 — Bartels Conn [−500, 500] 2 1
Table 4
Characteristics of the benchmark functions from CEC-BC-2017 (Awad et al., 2017). 𝑅𝑎𝑛𝑔𝑒 defines the lower
and upper bounds of the design variables. 𝐷𝑖𝑚 denotes the dimensionality of the search space. 𝐹𝑚𝑖𝑛 is the
global optimum value.
Function 𝐷𝑖𝑚 𝑅𝑎𝑛𝑔𝑒 𝐹𝑚𝑖𝑛

Unimodal functions

𝐹51 — Shifted and Rotated Bent Cigar Function 10 [−100, 100] 100

Multimodal functions

𝐹52 — Shifted and Rotated Rosenbrock’s Function 10 [−100, 100] 300
𝐹53 — Shifted and Rotated Rastrigin’s Function 10 [−100, 100] 400
𝐹54 — Shifted and Rotated Expanded Scaffer’s 𝐹6 Function 10 [−100, 100] 500
𝐹55 — Shifted and Rotated Lunacek Bi-Rastrigin Function 10 [−100, 100] 600
𝐹56 — Shifted and Rotated Non-Continuous Rastrigin’s Function 10 [−100, 100] 700
𝐹57 — Shifted and Rotated Levy Function 10 [−100, 100] 800
𝐹58 — Shifted and Rotated Schwefel’s Function 10 [−100, 100] 900

Hybrid functions (N is basic number of functions)

𝐹59 — Hybrid Function 1 (N = 3) 10 [−100, 100] 1000
𝐹60 — Hybrid Function 2 (N = 3) 10 [−100, 100] 1100
𝐹61 — Hybrid Function 3 (N = 3) 10 [−100, 100] 1200
𝐹62 — Hybrid Function 4 (N = 4) 10 [−100, 100] 1300
𝐹63 — Hybrid Function 5 (N = 4) 10 [−100, 100] 1400
𝐹64 — Hybrid Function 6 (N = 4) 10 [−100, 100] 1500
𝐹65 — Hybrid Function 6 (N = 5) 10 [−100, 100] 1600
𝐹66 — Hybrid Function 6 (N = 5) 10 [−100, 100] 1700
𝐹67 — Hybrid Function 6 (N = 5) 10 [−100, 100] 1800
𝐹68 — Hybrid Function 6 (N = 6) 10 [−100, 100] 1900

Composite functions (N is basic number of functions)

𝐹69 — Composite Function 1 (N = 3) 10 [−100, 100] 2000
𝐹70 — Composite Function 2 (N = 3) 10 [−100, 100] 2100
𝐹71 — Composite Function 3 (N = 4) 10 [−100, 100] 2200
𝐹72 — Composite Function 4 (N = 4) 10 [−100, 100] 2300
𝐹73 — Composite Function 5 (N = 5) 10 [−100, 100] 2400
𝐹74 — Composite Function 6 (N = 5) 10 [−100, 100] 2500
𝐹75 — Composite Function 7 (N = 6) 10 [−100, 100] 2600
𝐹76 — Composite Function 8 (N = 6) 10 [−100, 100] 2700
𝐹77 — Composite Function 9 (N = 6) 10 [−100, 100] 2800
𝐹78 — Composite Function 10 (N = 3) 10 [−100, 100] 2900
𝐹79 — Composite Function 11 (N = 3) 10 [−100, 100] 3000
• To evaluate the applicability of the metaheuristics to complex
real-world problems, four constrained engineering optimization
problems are used.
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• To rank the algorithms, a nonparametric statistical test called
Friedman mean rank test is performed for each set of bench-
marks/problems.
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Table 5
Parameter settings used for each algorithm and the source code links. NFEs denotes the number of objective function evaluations.
Algorithms Parameter settings NFEs

HBO Nill 40,000
Source link: https://github.com/qamar-askari/HBO
PO 𝜆 = 1 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/74577-political-optimizer-po
GPC 𝑔 = 9.8, Minimum friction = 1, Maximum friction = 10, Substitution probability = 0.5 40,000
Source link: http://www.harifi.com
GBO 𝛽𝑚𝑖𝑛 = 0.2, 𝛽𝑚𝑎𝑥 = 1.2, 𝑝𝑟 = 0.5 40,000
Source link: http://imanahmadianfar.com/codes/
RDA 𝛼 = 0.9, 𝛽 = 0.4, 𝛾 = 0.7, 𝑁𝑐𝑜𝑚 = 15 40,000
Source link: https://www.researchgate.net/profile/Amir-Fathollahi-Fard
MPA 𝐹𝐴𝐷𝑠 = 0.2, 𝑃 = 0.5 40,000
Source link: https://github.com/afshinfaramarzi/Marine-Predators-Algorithm
LFD Threshold = 2, 𝐶𝑆𝑉 = 0.5, 𝛼1 = 10, 𝛽 = 1.5, 𝛼2 = 0.00005, 𝛼3 = 0.005, 𝛾1 = 0.9, 𝛾2 = 0.1 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/76063-levy-flight-distribution-lfd
TSA PmiN = 1, Pmax = 4 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/75182-tunicate-swarm-algorithm-tsa
BWOA 𝑝𝑐 = 0.8, 𝑝𝑚 = 0.4, 𝑝𝐶𝑎𝑛𝑛𝑖𝑏𝑎𝑙𝑖𝑠𝑚 = 0.5 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/94080-black-widow-optimization-algorithm
ROA rain speed = 10, rain radius = 0.05(Xmax − Xmin), soil adsorptioN = 50% 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/65617-rain-water-algorithm
ChOA Nill 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/76763-chimp-optimization-algorithm
TSO 𝑘 = 2, z in [0, 2] 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/82640-transient-search-algorithm-tso
EO 𝑎1 = 2, 𝑎2 = 1, 𝑔𝑝 = 0.5 40,000
Source link: https://github.com/afshinfaramarzi/Equilibrium-Optimizer
SMA 𝑧 = 0.03 40,000
Source link: http://www.alimirjalili.com/SMA.html
TFWO nWh = 3 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/75868-turbulent-flow-of-water-based
SROA 𝜃 = 0.5, 𝑐𝑝 = 0.3 40,000
Source link: https://www.researchgate.net/profile/Amir-Shabani-13
BMO 𝑝𝑙 = 7 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/74730-barnacles-mating-optimizer-bmo
MRFO Nill 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/73130-manta-ray-foraging-optimization-mrfo
STSA The range of ratioFEs is [0, 1], the range of k is [0, 2] 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/79802-stsa-algorithm-code
AEFA 𝑘0 = 500, 𝛼 = 30 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/71218-aefa-artificial-electric-field-algorithm
MA 𝑎1 = 1, 𝑎2 = 1.5, 𝛽 = 2, 𝑑 = 0.1, 𝑓 𝑙 = 0.1, single point uniform crossover with the rate of 0.95 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/76902-a-mayfly-optimization-algorithm
AOA 𝐶1 = 2, 𝐶2 = 6 (standard), 𝐶3 = 2, 𝐶4 = 0.5 (cec or engineering) 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/79822-archimedes-optimization-algorithm
GNDO Nill 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/79526-the-source-code-for-gndo
PPA 𝑟1 = 1, 𝑟2 = 0.1, 𝑟3 = 0.1, 𝛼1 = 0.2, 𝛼2 = 0.25, 𝛽1 = 0.1, 𝛽2 = 0.1, 𝑐1 = 0.1, 𝑐2 = 0.1, 𝑑1 = 0.01, 𝑑2 = 0.01 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/74032-parasitism-predation-algorithm-ppa
FBI Nill 40,000
Source link: https://www.mathworks.com/matlabcentral/fileexchange/76299-forensic-based-investigation
BCMO Nill 40,000
Source link: https://github.com/ThangLe-duc/BCMO-Package
All the algorithms are executed using MATLAB, and simulations
re run on an Intel Core i7-5600U with 16 GB RAM. To achieve the
est results, the parameters used for each algorithm are the values
ecommended by the authors in their corresponding papers. The pa-
ameter settings for each algorithm can be seen in Table 5. For a fair
omparison, the population size for all algorithms is fixed at 40, and the
aximum number of objective function evaluations (NFEs) is fixed at
0,000. Moreover, to ensure consistency and rule out the chance of ac-
identally obtaining better results, each algorithm is independently run
5 times for each benchmark function, and the mean of the obtained
esults along with the standard deviation are reported.

.2. Comparison of exploitation capabilities

As previously stated, the investigation of the promising regions to
each the best position (optimum) of that region is called exploitation.
nimodal functions are considered the best way to evaluate the ex-
loitation capability of algorithms because they do not have any local
ptimum. In this paper, 25 unimodal functions, including 16 variable-
15
dimensional and nine fixed-dimensional functions, are used. The details
of the functions are given in Table 2. The comparative results of the
algorithms for unimodal functions are presented in Tables 6 and 7.
The results are presented in two tables to improve the readability.
The results include the average, standard deviation, and ranks of the
algorithms against each function. However, to provide final rankings,
their worst relative performances should also be considered, which is
completed through a nonparametric statistical test called the Friedman
mean rank test. The result of the Friedman test is presented in Fig. 3.
It should be noted that a smaller bar or lower value on the bar
indicates a better rank. Furthermore, the convergence curves of the top
5 algorithms, which are obtained through the Friedman mean rank test,
for 16 selected unimodal benchmark functions are presented in Fig. 4.

4.3. Comparison of exploration capabilities

The goal of exploration is to find promising regions in the search
space. Multimodal functions with complex landscapes have many local
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Table 6
Comparison of the performance of HBO, PO, GPC, GBO, RDA, MPA, LFD, TSA, BWOA, ROA, ChOA, TSO, and EO for unimodal functions.

Fn Stats HBO PO GPC GBO RDA MPA LFD TSA BWOA ROA ChOA TSO EO

𝐹1 Avg 8.8E−11 0 3.9E−22 9E−262 8.69979 1.1E−45 3.2E−07 5.3E−38 1.8E−07 94385.7 6.5E−11 2E−203 6.4E−80
Std 8.5E−11 0 6.2E−22 0 3.18206 4.8E−45 7.7E−08 9.7E−38 8.6E−07 5960.94 2.2E−10 0 2E−79
Rank 16 1 14 6 24 12 18 13 17 26 15 9 10

𝐹2 Avg 0.03693 0.00022 1.9E−05 0.00029 0.26753 0.0006 2.80927 0.00741 0.0218 195.512 0.00094 5.9E−05 0.00063
Std 0.00729 0.00021 1.8E−05 0.0002 0.07306 0.00032 1.38516 0.00316 0.03235 37.7612 0.00101 5.8E−05 0.00034
Rank 18 8 2 9 21 11 25 15 17 26 13 3 12

𝐹3 Avg 8.3E−34 0 5.1E−39 0 2.7E−06 4E−117 0.00057 4E−147 1.2E−12 0.12545 2.7E−32 3E−219 3E−298
Std 4.1E−33 0 2.5E−38 0 3.9E−06 2E−116 0.00144 1E−146 6.1E−12 0.03496 1.3E−31 0 0
Rank 15 1 14 1 24 12 25 11 20 26 16 10 9

𝐹4 Avg 2.6E−07 0 2E−11 3E−132 3.33825 4.3E−25 0.00414 1.8E−22 0.00082 1748.9 2.3E−07 7E−104 1.4E−45
Std 3.8E−07 0 1.6E−11 2E−131 1.25212 6.6E−25 0.00077 4.3E−22 0.00397 60.723 5.7E−07 2E−103 1.2E−45
Rank 16 1 14 7 22 12 19 13 17 26 15 9 10

𝐹5 Avg 19.3278 2E−281 1.2E−11 2E−120 52.7032 1.8E−17 0.00035 1.57708 21.4768 83.9443 0.12531 2E−104 8.3E−17
Std 3.58858 0 1.1E−11 8E−120 6.24591 1.1E−17 4E−05 1.04552 6.14554 1.35114 0.21931 9E−104 1.7E−16
Rank 20 2 14 6 24 12 15 17 21 26 16 8 13

𝐹6 Avg 9.4E−11 0 8.96762 2.2E−07 10.5597 5E−08 0.33322 5.82439 3.5E−08 90766.7 6.81108 0.00061 1.3E−06
Std 1E−10 0 0.30019 5.1E−07 6.13958 1.7E−08 0.12543 0.85172 1.5E−07 3533.2 0.43011 0.00086 1.3E−06
Rank 2 1 22 5 24 4 15 19 3 26 20 10 6

𝐹7 Avg −275 −275 −63.28 −275 −224.52 −275 −190.52 −122.24 −149.6 −1932 −275 −275 −274.76
Std 0 0 5.72655 0 4.86587 0 19.348 9.54935 16.9263 4086.37 0 0 0.52281
Rank 4 4 26 4 18 4 22 25 24 3 4 4 15

𝐹8 Avg 78617 0 1.2E−20 2E−216 63271.3 1.4E−08 2.7E−06 0.01703 1927.9 139987 101.852 8.4E−87 7.3E−11
Std 13048.2 0 1.5E−20 0 8315.32 4.9E−08 7.3E−07 0.08151 665.145 19475.2 377.611 3.1E−86 2.7E−10
Rank 25 1 11 5 24 13 14 15 19 26 17 9 12

𝐹9 Avg 3E−07 0 2.7E−11 6E−132 2.2E+30 4.9E−25 0.00453 8E−23 2E−06 3.9E+58 1E−07 2.9E−93 3.1E−45
Std 8.1E−07 0 2.8E−11 3E−131 1.1E+31 5.8E−25 0.00081 1.1E−22 4E−06 1.2E+59 2.1E−07 1.4E−92 4.6E−45
Rank 16 1 14 7 25 12 18 13 17 26 15 9 10

𝐹10 Avg 1E−17 0 2E−115 0 456660 1E−193 1E−44 3.3E−82 3.6E−21 6.4E+09 1.3E−25 0 6E−237
Std 2.1E−17 0 1E−114 0 699110 0 1.8E−44 1.4E−81 1.8E−20 1.7E+09 3.3E−25 0 0
Rank 19 1 13 1 25 12 15 14 17 26 16 1 10

𝐹11 Avg 113.832 0 47.5457 39.7552 22725.4 43.8679 47.4354 48.2961 4213.05 3E+08 48.8069 0.01616 44.1268
Std 48.3232 0 0.34859 2.34497 14963.9 0.45492 0.12113 0.8359 7778.33 3.1E+07 0.24011 0.01744 0.23069
Rank 18 1 13 5 24 7 12 15 23 26 16 2 8

𝐹12 Avg 6.9E−13 0 3.2E−25 2E−263 0.02889 1.1E−48 14.2723 9.2E−41 18.1527 104448 6.1E−14 2E−186 6.4E−83
Std 1.6E−12 0 6.9E−25 0 0.0143 2E−48 9.55586 1.5E−40 9.21748 216182 2.1E−13 0 2E−82
Rank 15 1 13 6 19 11 23 12 24 26 14 9 10

𝐹13 Avg 1.78554 0.03973 0.66707 0.66667 254.29 0.66667 0.66756 0.8 96.0046 3256620 0.89336 0.28071 0.66667
Std 1.76948 0.0422 0.00052 2.8E−07 126.761 5.3E−09 0.00108 0.16666 159.638 384850 0.15866 0.11727 9.8E−12
Rank 18 1 12 10 24 9 13 16 23 26 17 2 5

𝐹14 Avg 0.0999 0 3.9E−24 3E−250 297.228 8.7E−19 28.6491 0.00027 5.437 15682.2 1.1E−05 2E−201 5.7E−16
Std 0.06422 0 6.2E−24 0 183.713 4.3E−18 41.5183 0.0004 4.30321 2087.82 2.7E−05 0 2.6E−15
Rank 16 1 10 5 25 11 22 14 21 26 13 8 12

𝐹15 Avg 387.014 0 1.5E−22 2E−191 487.627 3.8E−05 1.4E−06 2.1E−14 110.378 9.5E+07 22.7963 3.2E−43 5.1E−07
Std 63.2533 0 1.9E−22 0 44.9877 2.7E−05 4E−06 4.8E−14 40.5353 4.3E+08 23.7844 1.2E−42 1.2E−06
Rank 22 1 10 5 24 14 13 11 19 26 17 9 12

𝐹16 Avg 0 −0.32 0 −0.1998 0 −0.1591 −0.04 2E−144 7E−240 5.3E−85 0 −0.48 0
Std 0 0.4761 0 0.40784 0 0.37207 0.2 9E−144 0 2.6E−84 0 0.5099 0
Rank 11 7 11 8 11 9 10 23 21 26 11 6 11

𝐹17 Avg 1.88145 5.8874 3588.26 0.0194 0.4798 0.04488 27.9816 288.131 117.743 146.008 3037.82 339.506 0.21132
Std 2.19508 12.6634 4002.02 0.02799 0.96281 0.089 48.3775 906.558 361.171 135.063 1970.91 489.423 0.31437
Rank 9 16 26 1 8 2 17 23 20 21 25 24 6

𝐹18 Avg 6E−197 0 1E−36 0 2.6E−29 3E−147 2.6E−12 2E−17 8.5E−94 0.00858 0 6E−205 0
Std 0 0 4.3E−36 0 1.2E−28 1E−146 3.4E−12 1E−16 4.3E−93 0.00917 0 0 0
Rank 14 1 21 1 22 16 25 24 19 26 1 13 1

𝐹19 Avg 0 2.9E−27 0.32859 0 9.9E−27 0 7.2E−07 0.21338 0.08286 0.00235 0.03052 2.9E−08 0
Std 0 1.4E−26 0.35597 0 4.2E−26 0 1.6E−06 0.34922 0.13137 0.00224 0.15241 4.4E−08 0
Rank 1 13 26 1 14 1 17 25 24 21 23 16 1

𝐹20 Avg 0 0 0.00014 0 1.6E−26 0 2.8E−13 0.288 0.00014 0.04058 0.00012 8.4E−05 0
Std 0 0 0.00013 0 7.7E−26 0 8.3E−13 0.6735 0.00071 0.03842 0.00012 0.00011 0
Rank 1 1 23 1 15 1 16 26 24 25 22 21 1

𝐹21 Avg 1.4E−87 1.4E−87 1.4E−87 1.4E−87 1.4E−87 1.4E−87 1.4E−87 1.4E−87 2.22354 0.11435 1.4E−87 1.4E−87 1.4E−87
Std 5E−103 5E−103 5E−103 5E−103 5E−103 5E−103 5E−103 5E−103 2.44935 0.08722 5E−103 5E−103 5E−103
Rank 2 2 2 2 2 2 2 2 26 25 2 2 2

(continued on next page)
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Table 6 (continued).
Fn Stats HBO PO GPC GBO RDA MPA LFD TSA BWOA ROA ChOA TSO EO

𝐹22 Avg 1.1E−70 0 3.1E−37 0 2.9E−29 2E−117 1.6E−15 1E−168 6E−05 0.00228 5E−152 3E−208 8E−301
Std 5.3E−70 0 1.5E−36 0 1.4E−28 1E−116 1.8E−15 0 0.00026 0.00237 2E−151 0 0
Rank 19 1 21 1 22 16 24 13 25 26 14 12 9

𝐹23 Avg 0.29258 0.29425 0.29258 0.29258 0.29258 0.29258 0.29327 0.29258 0.2934 0.29699 0.29258 0.29259 0.29258
Std 7.3E−17 0.00832 7.3E−07 1E−16 1.4E−16 1.3E−16 0.00171 2.8E−08 0.00264 0.00372 3E−07 1.8E−05 9E−17
Rank 2 24 16 2 7 9 22 13 23 25 15 17 2

𝐹24 Avg 19.1059 19.1059 19.1284 19.1059 19.1059 19.1059 19.1059 64.027 19.8577 3320.06 19.1095 19.1367 19.1059
Std 1.1E−14 7.6E−15 0.0242 8.5E−15 7.9E−15 7.2E−15 2E−10 103.716 2.78949 4731.25 0.00275 0.03722 9.8E−15
Rank 2 8 22 3 8 8 17 25 24 26 21 23 3

𝐹25 Avg 3.9E−11 0 0.39206 0 4.2E−16 0 0.0003 0.09006 0.09494 0.0012 0.00022 3.9E−07 2.5E−17
Std 1.5E−10 0 0.1993 0 1.4E−15 0 0.00021 0.21059 0.08809 0.00171 0.00022 1E−06 8.2E−17
Rank 14 1 26 1 12 1 19 24 25 20 18 16 10
Fig. 3. Friedman mean ranks of all algorithms for unimodal benchmark functions.
Fig. 4. Comparison of the convergence curves of the top five algorithms for selected unimodal functions.
17



A. Alorf Engineering Applications of Artificial Intelligence 117 (2023) 105622
Table 7
Comparison of the performance of SMA, TFWO, SROA, BMO, MRFO, STSA, AEFA, MA, AOA, GNDO, PPA, FBI, and BCMO for unimodal functions.

Fn Stats SMA TFWO SROA BMO MRFO STSA AEFA MA AOA GNDO PPA FBI BCMO

𝐹1 Avg 0 1E−05 0.00218 0 0 3E−260 0.79194 0.0001 0 668.715 7.45428 4E−231 6.5E−55
Std 0 1.9E−05 0.0013 0 0 0 1.95264 0.00011 0 501.24 5.58311 0 3.2E−54
Rank 1 19 21 1 1 7 22 20 1 25 23 8 11

𝐹2 Avg 0.00011 0.17171 0.00773 1.5E−05 0.00011 9.2E−05 0.55601 0.06792 0.00042 0.75479 0.66619 8.1E−05 0.00713
Std 8.1E−05 0.05726 0.00566 1.7E−05 9.1E−05 4E−05 0.55206 0.02419 0.00026 0.34655 0.2229 6.9E−05 0.00477
Rank 7 20 16 1 6 5 22 19 10 24 23 4 14

𝐹3 Avg 0 3.1E−25 4.3E−25 0 0 0 6.2E−12 1.9E−21 0 2.4E−11 9.2E−11 0 8E−117
Std 0 1.3E−24 1.4E−24 0 0 0 1.1E−11 9.2E−21 0 7.6E−11 1.6E−10 0 4E−116
Rank 1 17 18 1 1 1 21 19 1 22 23 1 13

𝐹4 Avg 5E−197 0.00107 0.15444 0 7E−210 1E−141 3.70473 0.11155 2E−164 95.1737 67.9468 1E−117 5E−26
Std 0 0.00116 0.04609 0 0 1E−141 4.03607 0.28301 0 30.0356 27.3697 2E−117 2.5E−25
Rank 4 18 21 1 3 6 23 20 5 25 24 8 11

𝐹5 Avg 1E−201 36.9628 2.2E−18 0 7E−207 5.1E−92 5.38132 69.4154 3E−164 18.8861 42.6323 3E−108 7.9E−24
Std 0 3.84653 8.1E−18 0 0 8.1E−92 1.72107 29.8765 0 2.09445 7.23238 3E−108 2.8E−23
Rank 4 22 11 1 3 9 18 25 5 19 23 7 10

𝐹6 Avg 0.00772 2.5E−05 0.00251 1.71412 7.7E−06 4.22112 2.41027 6.5E−05 10.169 636.734 7.56805 0.04535 0.26736
Std 0.00536 6.3E−05 0.00129 0.44877 2.1E−05 0.24728 8.47957 3.1E−05 0.44454 337.691 4.83263 0.02456 0.17239
Rank 12 8 11 16 7 18 17 9 23 25 21 13 14

𝐹7 Avg −275 −275 −1E+34 −275 −203.4 −178.84 −275 −275 −5985.3 −257.8 −210.12 −197.12 −272.04
Std 0 0 4.7E+34 0 8.4113 3.97576 0 0 5067.93 13.1022 11.0277 2.83314 1.7673
Rank 4 4 1 4 20 23 4 4 2 17 19 21 16

𝐹8 Avg 0 788.222 70.0899 0 0 3E−106 3872.12 10644.5 1E−215 2474.85 2240.26 3E−184 1.4E−41
Std 0 368.674 41.1135 0 0 9E−106 1042.18 2600.35 0 878.192 891.844 0 4.3E−41
Rank 1 18 16 1 1 8 22 23 6 21 20 7 10

𝐹9 Avg 2E−205 0.00603 0.2262 0 5E−210 8E−142 275.741 2.06611 4E−167 150.252 667.423 1E−117 2.3E−30
Std 0 0.00494 0.06252 0 0 1E−141 45.836 3.5892 0 41.9746 153.314 2E−117 9.7E−30
Rank 4 19 20 1 3 6 23 21 5 22 24 8 11

𝐹10 Avg 0 8.4E−09 1.9E−18 0 0 0 1.17275 3.6E−15 0 40.7459 1.81308 0 1E−219
Std 0 4.1E−08 6.3E−18 0 0 0 3.57092 7.8E−15 0 88.0868 2.80923 0 0
Rank 1 21 18 1 1 1 22 20 1 24 23 1 11

𝐹11 Avg 1.30367 201.593 25.3618 47.3877 43.1405 46.6645 955.411 189.818 48.8081 55320.2 1535.1 46.4251 47.9325
Std 1.18767 153.101 18.7331 0.37527 0.46971 0.13928 785.987 220.148 0.09194 49346 1325.07 0.3413 0.21773
Rank 3 20 4 11 6 10 21 19 17 25 22 9 14

𝐹12 Avg 0 9.9E−08 2.8E−06 0 0 5E−263 0.08747 3.6E−05 0 36.731 0.57552 1E−233 0.15488
Std 0 2E−07 1.6E−06 0 0 0 0.37429 1.7E−05 0 11.54 0.47479 0 0.07142
Rank 1 16 17 1 1 7 20 18 1 25 22 8 21

𝐹13 Avg 0.34168 7.27026 0.5525 0.66676 0.66667 0.66667 59.985 3.56058 0.7695 737.757 40.3642 0.66667 0.66853
Std 0.18596 3.94809 0.18315 8.4E−05 9.7E−10 3.2E−11 63.61 3.55079 0.09944 853.032 25.7208 7.1E−09 0.00233
Rank 3 20 4 11 7 6 22 19 15 25 21 8 14

𝐹14 Avg 0 0.12961 0.0006 0 0 1E−213 91.2107 0.44567 6E−138 30.5828 3.39095 2E−228 1.35208
Std 0 0.07059 0.00024 0 0 0 36.9807 0.40637 3E−137 31.2964 2.87872 0 0.41071
Rank 1 17 15 1 1 7 24 18 9 23 20 6 19

𝐹15 Avg 0 127.483 0.77826 0 0 1.6E−53 392.658 733.42 3.6E−46 12.1721 72.3116 1E−98 161.478
Std 0 79.455 0.49452 0 0 7.9E−53 73.7516 118.762 1.8E−45 17.243 28.1132 5.1E−98 37.5916
Rank 1 20 15 1 1 7 23 25 8 16 18 6 21

𝐹16 Avg −1 0 −0.7472 −1 −0.96 1E−288 3E−105 0 0 0 1E−107 1E−150 −0.9741
Std 5.3E−16 0 0.36239 0 0.2 0 1E−104 0 0 0 6E−107 5E−150 0.06452
Rank 2 11 5 1 4 20 25 11 11 11 24 22 3

𝐹17 Avg 0.25399 0.05619 2.51238 36.7442 2.67916 3.58042 180.586 0.04962 75.1912 3.44683 0.12114 3.15732 4.17815
Std 0.40741 0.09921 2.22408 99.9802 3.91765 4.38803 227.471 0.1035 59.2343 9.82014 0.26269 4.68471 10.6433
Rank 7 4 10 18 11 14 22 3 19 13 5 12 15

𝐹18 Avg 0 1.2E−86 4E−101 0 0 0 8.2E−28 4E−246 0 1E−288 2E−106 0 3E−155
Std 0 5.9E−86 2E−100 0 0 0 9E−28 0 0 0 7E−106 0 1E−154
Rank 1 20 18 1 1 1 23 12 1 11 17 1 15

𝐹19 Avg 7.6E−10 1.1E−33 0 0.00016 0 7.8E−06 2E−27 0.03048 0.00126 2.8E−32 0 0 5.1E−33
Std 1.5E−09 5.5E−33 0 0.00078 0 1.7E−05 2E−27 0.15241 0.00232 0 0 0 2.5E−32
Rank 15 9 1 19 1 18 12 22 20 11 1 1 10

𝐹20 Avg 5.1E−10 0 0 1.9E−10 0 4.4E−06 2.3E−27 0 2.7E−06 7.9E−31 0 0 0
Std 1.4E−09 0 0 9.6E−10 0 4.9E−06 1.8E−27 0 1.1E−05 0 0 0 0
Rank 18 1 1 17 1 20 14 1 19 13 1 1 1

𝐹21 Avg 1.4E−87 1.4E−87 0 0.05712 1.4E−87 1.4E−87 1.4E−87 1.4E−87 1.4E−87 7.3E−17 1.4E−87 3E−23 1.4E−87
Std 5E−103 5E−103 0 0.28562 5E−103 5E−103 5E−103 5E−103 5E−103 3.6E−16 5E−103 6.8E−23 5E−103
Rank 2 2 1 24 2 2 2 2 2 23 2 22 2

(continued on next page)
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Table 7 (continued).
Fn Stats SMA TFWO SROA BMO MRFO STSA AEFA MA AOA GNDO PPA FBI BCMO

𝐹22 Avg 0 1.5E−78 3.9E−53 0 0 0 8.3E−29 8E−257 0 2E−236 2E−105 0 1E−133
Std 0 7.3E−78 9.3E−53 0 0 0 8.6E−29 0 0 0 1E−104 0 4E−133
Rank 1 18 20 1 1 1 23 10 1 11 17 1 15

𝐹23 Avg 0.29258 0.29258 0 0.29261 0.29258 0.29258 0.32049 0.29263 0.29258 0.29258 0.29263 0.29258 0.29264
Std 8.2E−15 9.3E−17 0 7.6E−05 1.2E−16 3.7E−10 0.0204 0.00026 2.3E−07 1.2E−11 0.00026 8.2E−17 0.00016
Rank 10 2 1 18 7 12 26 19 14 11 19 2 21

𝐹24 Avg 19.1059 19.1059 0 19.1059 19.1059 19.1059 19.1059 19.1059 19.1059 19.1059 19.1059 19.1059 19.1059
Std 5.8E−09 1E−14 0 5.9E−15 7E−15 3.6E−05 9.9E−15 1E−14 1.1E−06 1.1E−14 8E−15 7.1E−15 7.1E−15
Rank 18 3 1 14 8 20 3 3 19 16 14 8 8

𝐹25 Avg 4.9E−08 8.3E−32 3.4E−29 0.05918 9.4E−12 9.1E−05 0.01758 0 0.0325 1.2E−32 0 2E−16 1.3E−30
Std 9.6E−08 4.2E−31 1.7E−28 0.05409 3.6E−11 0.00015 0.02409 0 0.03487 0 0 6E−16 4.3E−30
Rank 15 7 9 23 13 17 21 1 22 6 1 11 8
Fig. 5. Friedman mean ranks of all algorithms for multimodal benchmark functions.
optima and can be used to evaluate an algorithm’s exploration capa-
bility because an algorithm may locate the most promising region if
it can explore the search space well. To evaluate the exploration ca-
pability of algorithms, 25 multimodal functions, including 15 variable-
dimensional and ten fixed-dimensional benchmark functions, are used.
The names and characteristics of the multimodal functions are given in
Table 3. The comparative results are presented in Tables 8 and 9. In
addition, to statistically rank the algorithms, the Friedman mean rank
test is performed, and the result is presented in Fig. 5. The convergence
curves of the top 5 algorithms (according to the Friedman mean rank
test) for eight selected multimodal benchmarks are presented in Fig. 6.

4.3.1. Comparison of solving complex and challenging landscapes
CEC-BC-2017 (Awad et al., 2017) is a collection of 29 challenging

landscapes, including shifted, rotated, composite, and hybrid bench-
marks. These artificial landscapes may help to further investigate the
optimization capabilities in terms of balancing exploration and ex-
ploitation. The specifications of CEC-BC-2017 functions are presented
in Table 4, and the results of all algorithms for these functions are
shown in Tables 10 and 11. Moreover, to statistically rank these al-
gorithms, the Friedman test is performed, and the output of the test is
plotted in Fig. 7.

4.4. Comparison of solving constrained engineering optimization problems

Engineering optimization problems belong to the branch of con-
strained optimization. They have extensively been utilized as bench-
marks in the literature to evaluate the applicability of algorithms to
real-world optimization problems. In this section, the performance
of all algorithms is compared by using four well-known engineer-

ing problems: the speed-reducer design problem, tension/compression

19
spring design problem, rolling-element bearing design problem, and
multiple-disk clutch brake design problem. The schematic views of
these problems are given in Fig. 8. Since these problems belong to
constrained optimization, the algorithms need some mechanism to sat-
isfy the constraints. In following the literature on handling constraints,
we used the death penalty method, in which the solution is penalized
with a high cost for violating any constraint. For a fair comparison, all
algorithms evaluate the objective function an equal number of times.
The NFEs are fixed for all algorithms at 10,000 for the speed-reducer
problem, 16,000 for the tension/compression problem, 8000 for the
rolling-element bearing design problem, and 1000 for the multiple
disk-clutch brake design problem. The results for engineering problems
are compared in Table 12. Moreover, the Friedman mean rank test
is performed to generate overall ranks, and the results are plotted in
Fig. 7.

5. Discussion of results and evaluation of compared algorithms

In this section, based on the comparative results presented in the
previous section, the performance of each algorithm is critically eval-
uated and discussed one by one. The weaknesses and strengths of all
algorithms are highlighted based on their results, and possible future
directions are also discussed.

5.1. Performance of HBO

When considering HBO on the unimodal benchmark functions, we
find that its performance on approximately half of the unimodal func-
tions is sufficient. In two cases, the exact global optimum is found.

However, based on its comparative performance, HBO is part of the top
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Table 8
Comparison of the performance of HBO, PO, GPC, GBO, RDA, MPA, LFD, TSA, BWOA, ROA, ChOA, TSO, and EO for multimodal functions.

Fn Stats HBO PO GPC GBO RDA MPA LFD TSA BWOA ROA ChOA TSO EO

𝐹26 Avg 23.9151 9.47508 269.463 116.764 218.429 103.424 303.062 238.585 40.4917 318.151 334.196 0.095 121.27
Std 7.52135 32.7941 4.39371 21.8015 18.5572 12.361 9.93187 15.9142 28.5763 8.6702 9.01511 0.47374 16.7312
Rank 6 5 21 11 19 9 23 20 8 24 25 4 12

𝐹27 Avg 20.039 7.95967 0 0 372.85 0 0.01761 358.18 3.3E−05 295.859 4.97465 0 0
Std 3.36203 18.614 0 0 16.0057 0 0.08789 62.6871 0.0001 19.8677 6.03572 0 0
Rank 19 17 1 1 26 1 14 25 13 24 16 1 1

𝐹28 Avg 4.22752 0.952 0.9 0.9 8.72494 1.00868 0.9 8.16204 1.00009 15.1545 13.2046 0.9 1.00087
Std 0.96784 0.05099 3.4E−16 3.4E−16 0.52953 0.00501 2E−09 1.13818 0.00018 0.75391 0.49306 3.4E−16 0.00156
Rank 20 9 1 1 22 14 7 21 11 26 25 1 12

𝐹29 Avg 0.00259 14.4113 25959.5 0.00115 1.4E+07 110.652 17640.5 5357.7 1290.66 2.4E+11 27826.9 8744.32 0.07922
Std 0.00581 48.7294 1361.73 0.0026 1.2E+07 297.079 3107.51 2930.47 3616.81 2.1E+10 1969.14 2102.1 0.19025
Rank 2 6 19 1 24 8 17 14 12 26 20 15 4

𝐹30 Avg 1.4E−05 0 1.8E−13 6E−135 34.7646 8.9E−27 5.2E−05 58.3093 0.00034 85.3887 0.00049 5E−104 4.2E−09
Std 6.2E−05 0 1.7E−13 2E−134 3.19512 2.1E−26 6.7E−06 11.8057 0.0007 5.16176 0.00058 3E−103 2.1E−08
Rank 14 1 12 7 24 11 15 25 16 26 17 9 13

𝐹31 Avg 1.66267 0 2.2E−22 1.8E−50 107561 1E−23 3.3E−06 0.41851 0.00472 1.1E+19 2.7E−06 7.5E−19 2E−111
Std 4.80318 0 8.7E−22 9.1E−50 170479 5E−23 1.2E−05 0.74614 0.01218 1.6E+19 1.3E−05 3.6E−18 8E−111
Rank 20 1 11 8 21 10 15 18 17 26 14 12 6

𝐹32 Avg 1.9E−06 −9E−16 2.6E−12 −9E−16 1.57051 2.5E−15 0.00011 1.09582 3.7E−06 20.4292 19.9646 −9E−16 4.4E−15
Std 1.4E−06 0 3.1E−12 0 0.53309 7.1E−16 1.3E−05 1.49757 9E−06 0.08881 0.00047 0 1.8E−15
Rank 14 1 13 1 21 10 16 19 15 26 25 1 12

𝐹33 Avg 2.77595 1 133.057 43.3093 662.198 40.1966 71.1023 189.585 1.21432 2380319 141.125 1.00897 26.4082
Std 1.8243 0 3.08368 11.0546 198.035 6.96597 47.6114 49.1734 1.06104 129495 10.0034 0.01505 6.65037
Rank 4 1 17 10 22 9 14 20 3 26 18 2 6

𝐹34 Avg 0.47995 0.01689 1.7E−12 1E−108 2.94145 0.14387 6.6E−05 0.41987 0.22387 30.7213 0.12285 4E−100 0.10387
Std 0.04995 0.05094 1.3E−12 3E−108 0.48965 0.05066 1.2E−05 0.07638 0.06633 0.89208 0.04039 2E−99 0.02
Rank 19 9 6 4 22 15 7 17 16 26 14 5 13

𝐹35 Avg −1957.2 −1958.3 −815.78 −1708.9 −1399.1 −1762.1 −1364.8 −1409.8 −1939.1 −914.74 −883.13 −1958.3 −1739.5
Std 3.91428 4.6E−13 49.7182 64.5093 32.2977 41.6813 57.5066 75.5368 24.7464 38.9749 54.2499 0.00062 36.7555
Rank 5 1 26 13 20 9 21 19 7 24 25 2 10

𝐹36 Avg 1.3E−08 0 0 0 0.39612 0 1.9E−08 0.00338 0.07897 24.5007 0.00586 0 0
Std 6.5E−08 0 0 0 0.19003 0 5.6E−09 0.00581 0.15771 1.25088 0.01438 0 0
Rank 14 1 1 1 24 1 15 17 22 26 18 1 1

𝐹37 Avg 8.1E−23 −0.76 1.8E−15 −1 3.6E−19 2.4E−27 −0.9995 4.4E−21 2.3E−21 3.9E−14 1.8E−16 −1 5.5E−25
Std 2.9E−22 0.43589 1.8E−15 0 1.7E−19 8.6E−28 6.6E−05 2.5E−21 2.6E−22 2.1E−14 2.2E−16 0 4.3E−25
Rank 14 7 25 1 21 10 6 18 17 26 24 1 13

𝐹38 Avg 3.1E−19 1.2E−20 3.2E−09 1.4E−20 3.3E−17 1.7E−20 6.8E−20 8.1E−12 1.2E−20 6.4E−09 1.7E−19 1.2E−20 6E−20
Std 1.1E−19 5.7E−35 4.9E−09 9.1E−21 4.5E−17 6.1E−21 4.4E−21 1.7E−11 3.1E−22 8.7E−09 1.9E−21 1.3E−23 2.1E−21
Rank 18 2 25 7 22 8 14 24 4 26 17 3 12

𝐹39 Avg 0.00088 1.3E−32 4.63657 0.00956 70694.6 0.01512 4.93584 5.27782 1.2E−05 8.9E+08 4.72757 0.00011 0.03874
Std 0.00304 5.6E−48 0.10322 0.0127 111519 0.02033 0.0275 0.99835 5.4E−05 8.2E+07 0.16146 0.00013 0.05067
Rank 5 1 16 7 25 8 19 21 2 26 17 3 10

𝐹40 Avg 1.6E−11 9.4E−33 0.62066 1.4E−08 22174.5 2.3E−09 0.49981 9.61048 5.2E−07 3.6E+08 0.54467 6.4E−06 5.1E−08
Std 3.3E−11 1.4E−48 0.03617 4.3E−08 52809.2 7.8E−10 0.0755 3.4102 2.6E−06 4.8E+07 0.14247 1.2E−05 5.7E−08
Rank 2 1 18 4 25 3 16 23 7 26 17 8 5

𝐹41 Avg 4E−227 0 1.8E−36 0 4E−35 2E−147 4.6E−11 2E−227 1.3E−07 0.15667 0 4E−215 0
Std 0 0 5.9E−36 0 1.5E−34 9E−147 5.6E−11 0 6.6E−07 0.13191 0 0 0
Rank 14 1 21 1 22 17 24 13 25 26 1 15 1

𝐹42 Avg −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.14 −195.63 −195.63 −195.63
Std 5.8E−14 5.8E−14 9.8E−06 5.8E−14 0.00039 5.8E−14 2.6E−12 1E−06 9.4E−05 0.81724 3.1E−05 4.5E−05 5.9E−14
Rank 1 1 19 1 23 1 14 18 21 25 22 20 1

𝐹43 Avg −2.0218 −2.0218 −1.9496 −2.0218 −2.0218 −2.0218 −2.0218 −2.0218 −1.8805 −2.3282 −2.0218 −2.0217 −2.0218
Std 1.4E−15 1.3E−15 0.04311 1.4E−15 3.7E−10 1.4E−15 1.4E−05 5.8E−12 0.09055 0.15221 1.1E−10 0.00025 1.3E−15
Rank 2 2 24 2 20 2 22 17 25 1 19 23 2

𝐹44 Avg −106.76 −106.76 −106.74 −106.76 −106.76 −106.76 −106.76 −105.21 −106.25 −106.54 −106.75 −106.76 −106.76
Std 2.9E−15 1.8E−14 0.02174 8.2E−15 0.00092 1.3E−14 5E−11 5.38641 1.77473 0.25766 0.01118 0.00116 7.1E−15
Rank 1 7 21 1 18 7 14 25 23 22 20 19 1

𝐹45 Avg −1.0316 −1.0316 −1.0275 −1.0316 −1.0316 −1.0316 −1.0316 −1.0278 −1.0266 −1.0256 −1.0316 −1.0316 −1.0316
Std 6.7E−16 6.7E−16 0.00563 6.8E−16 1.6E−05 6.4E−16 1.2E−11 0.01049 0.02297 0.00909 3.2E−06 1.3E−06 6.4E−16
Rank 1 1 23 1 21 1 16 22 24 25 20 19 1

(continued on next page)
5 algorithms for 6 functions only. To better determine its comparative
position, the Friedman mean rank test is performed. According to the
Friedman test, HBO is the 14th best algorithm. Based on these indi-
vidual and comparative performance analyses, we conclude that HBO
has a weak exploitative capability and needs improvement. This finding
20
may help researchers investigate this aspect further and improve HBO.
In addition, the exploration capability of HBO is evaluated by using
multimodal benchmark functions. Its performance on more than half
of the functions is promising and could have been further improved
with more iterations. Moreover, in 6 cases, the exact global optimum
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Table 8 (continued).
Fn Stats HBO PO GPC GBO RDA MPA LFD TSA BWOA ROA ChOA TSO EO

𝐹46 Avg 0.39789 0.39789 0.84735 0.39789 0.39789 0.39789 0.39789 0.39789 0.39791 0.40592 0.39805 0.39789 0.39789
Std 0 0 0.73568 0 0 0 2.4E−11 3E−06 0.00012 0.01745 0.00017 2.8E−06 0
Rank 2 2 26 2 2 2 18 22 23 25 24 21 2

𝐹47 Avg −3.8628 −3.8628 −3.5943 −3.8628 −3.8628 −3.8628 −3.8579 −3.8627 −3.8533 −3.8539 −3.8555 −3.8368 −3.8628
Std 2.3E−15 2.3E−15 0.28255 2.3E−15 5.2E−06 2.3E−15 0.00342 3.1E−05 0.01071 0.00654 0.00231 0.05015 2.1E−15
Rank 1 1 26 1 18 1 21 19 24 23 22 25 1

𝐹48 Avg −3.322 −3.3125 −2.1583 −3.2649 −3.3167 −3.322 −3.0819 −3.2585 −3.2585 −3.0236 −2.6098 −3.1135 −3.2504
Std 4.5E−16 0.03292 0.40755 0.06062 0.00349 1.5E−15 0.06456 0.08008 0.07029 0.09529 0.46858 0.12692 0.05965
Rank 1 7 26 13 6 4 23 16 15 24 25 22 19

𝐹49 Avg −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0625 −2.0626 −2.0626 −2.0626
Std 9.1E−16 9.1E−16 4.3E−07 9.1E−16 8.6E−07 9.1E−16 7.9E−15 8.8E−08 7E−06 0.00015 2E−06 3.7E−07 9.1E−16
Rank 1 1 21 1 22 1 15 19 23 25 24 20 1

𝐹50 Avg 1 1 1 1 1 1 1 1 1.00001 46.2722 1 1 1
Std 0 0 4.5E−17 0 3.8E−14 0 4.4E−07 0 2.8E−05 61.7362 0 0 0
Rank 2 2 2 2 21 2 22 2 24 26 2 2 2
Fig. 6. Comparison of the convergence curves of the top five algorithms for selected multimodal functions.
Fig. 7. Friedman mean ranks of all algorithms for CEC-BC-2017 benchmark functions.
21
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Table 9
Comparison of the performance of SMA, TFWO, SROA, BMO, MRFO, STSA, AEFA, MA, AOA, GNDO, PPA, FBI, and BCMO for multimodal functions.

Fn Stats SMA TFWO SROA BMO MRFO STSA AEFA MA AOA GNDO PPA FBI BCMO

𝐹26 Avg 0.0174 37.8801 −4E+26 181.824 159.737 287.8 349.826 115.962 −8E+10 216.288 157.27 161.698 142.506
Std 0.02547 8.169 7.6E+26 25.7744 19.3397 6.4032 9.09031 14.4516 3.9E+11 46.7101 16.6006 10.2596 16.3283
Rank 3 7 1 17 15 22 26 10 2 18 14 16 13

𝐹27 Avg 0 16.6412 1.91382 0 0 0 57.5095 88.9901 0 52.8697 99.2446 0 0
Std 0 5.93303 3.64394 0 0 0 8.87532 28.1514 0 15.6247 17.7303 0 0
Rank 1 18 15 1 1 1 21 22 1 20 23 1 1

𝐹28 Avg 0.9 1.10075 0.948 0.9 0.9 8.74962 1.00227 1.00003 12.0456 2.70021 1.03944 2.18983 1.54686
Std 3.4E−16 0.50016 0.04336 3.4E−16 3.4E−16 4.54498 0.00784 1.2E−05 4.79047 1.64002 0.06975 1.00824 2.23909
Rank 1 16 8 1 1 23 13 10 24 19 15 18 17

𝐹29 Avg 21.337 0.3098 929.014 2275.51 0.01187 11447.6 5449511 402752 20372.7 3.8E+07 282016 857.03 340.055
Std 11.3424 0.45311 197.547 1324.71 0.02057 805.249 3893192 1211749 2030.63 2.5E+07 430712 1094.91 358.226
Rank 7 5 11 13 3 16 23 22 18 25 21 10 9

𝐹30 Avg 1E−207 0.00592 0.02488 0 5E−212 6E−140 0.04612 0.01758 1E−166 3.70282 2.67474 1E−119 1.4E−34
Std 0 0.02346 0.0086 0 0 1E−139 0.07451 0.02775 0 1.96345 2.01859 9E−120 6E−34
Rank 4 18 20 1 3 6 21 19 5 23 22 8 10

𝐹31 Avg 2E−236 2.2E+11 1.3E−05 0 1.4E−56 0 1.4E+09 200105 4.7E−07 1.50596 7.8E+07 2E−112 1.6E−31
Std 0 1.1E+12 1E−05 0 7E−56 0 5.1E+09 972361 2.4E−06 1.7872 2.1E+08 1E−111 7E−31
Rank 4 25 16 1 7 1 24 22 13 19 23 5 9

𝐹32 Avg −9E−16 0.76056 0.01019 −9E−16 −9E−16 2.7E−15 1.18934 4.87721 −9E−16 10.0252 12.6245 −9E−16 −9E−16
Std 0 0.52986 0.00477 0 0 0 0.68366 3.50193 0 1.16351 1.37793 0 0
Rank 1 18 17 1 1 11 20 22 1 23 24 1 1

𝐹33 Avg 32.8359 13.4084 31.624 60.6184 45.7401 123.209 7869.37 286.922 149.146 32067.9 2413.04 104.63 70.3336
Std 28.7961 7.7927 12.7859 6.65513 3.59908 4.38856 3728.91 93.3643 9.40305 13116.9 834.898 26.8541 21.0551
Rank 8 5 7 12 11 16 24 21 19 25 23 15 13

𝐹34 Avg 0 2.13192 0.4627 0 0 0.09987 2.29038 4.3119 0.09188 5.33987 11.0039 0.09987 0.00817
Std 0 0.29827 0.26226 0 0 2.6E−10 0.50211 1.23703 0.02765 0.677 1.86066 8.1E−07 0.01833
Rank 1 20 18 1 1 11 21 23 10 24 25 12 8

𝐹35 Avg −1958.3 −1953.2 −1958.3 −1549.3 −1696.5 −1109.9 −1784.2 −1682.4 −1066.9 −1614.7 −1728 −1698.4 −1724.7
Std 0.01451 6.92555 0.00195 54.307 43.2115 28.2617 47.4589 56.5646 53.6557 54.1671 45.7018 63.7915 49.9529
Rank 4 6 3 18 15 22 8 16 23 17 11 14 12

𝐹36 Avg 0 0.05263 0.00036 0 0 0 0.05896 0.01133 0 1.11037 0.24219 0 0
Std 0 0.05428 0.00038 0 0 0 0.07425 0.01209 0 0.0775 0.12193 0 0
Rank 1 20 16 1 1 1 21 19 1 25 23 1 1

𝐹37 Avg −1 3.5E−25 −0.4423 −1 −1 2E−18 9.3E−22 9E−26 4.5E−19 5.6E−21 5.3E−22 6.1E−21 −0.1978
Std 0 7E−25 0.25961 0 0 8.1E−19 5.8E−22 8.9E−26 3.5E−19 2.1E−21 3.6E−22 6E−21 0.22975
Rank 1 12 8 1 1 23 16 11 22 19 15 20 9

𝐹38 Avg 1.1E−21 7.3E−20 1.2E−20 1.7E−18 1.3E−20 4E−16 3.7E−19 4.3E−20 1.5E−19 5.2E−20 4E−20 1E−18 6.1E−20
Std 3.4E−21 2.8E−20 4.6E−22 2.2E−18 7.9E−22 4.8E−16 4E−19 3.8E−21 1.7E−20 1.7E−20 4.1E−20 4.2E−19 1.1E−21
Rank 1 15 5 21 6 23 19 10 16 11 9 20 13

𝐹39 Avg 0.00286 0.03726 0.00042 4.95132 4.60789 2.62172 30.3653 0.71645 4.91386 14677.6 88.8541 1.84836 1.11029
Std 0.00222 0.05623 0.00032 0.00291 0.95408 0.09543 10.3888 1.5448 0.05315 47860.7 17.3179 1.9048 0.46939
Rank 6 9 4 20 15 14 22 11 18 24 23 13 12

𝐹40 Avg 0.00167 0.01908 2.2E−05 0.04234 8.1E−08 0.18293 2.61205 1.65552 0.88226 7.58402 20.4445 0.00068 0.00328
Std 0.00258 0.02857 3.4E−05 0.01584 1.6E−07 0.01685 0.92751 0.98017 0.09054 4.32026 9.50444 0.00033 0.00194
Rank 11 13 9 14 6 15 21 20 19 22 24 10 12

𝐹41 Avg 0 3E−101 2E−115 0 0 0 2.2E−26 0 0 0 2E−102 0 6E−153
Std 0 1E−100 3E−115 0 0 0 2.4E−26 0 0 0 8E−102 0 2E−152
Rank 1 20 18 1 1 1 23 1 1 1 19 1 16

𝐹42 Avg −195.63 −195.63 0 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63 −195.63
Std 4.4E−11 5.8E−14 0 5.8E−14 5.8E−14 9.4E−09 0.00194 5.8E−14 1E−10 8.7E−14 5.8E−14 5.8E−14 5.8E−14
Rank 15 1 26 1 1 17 24 1 16 1 1 1 1

𝐹43 Avg −2.0218 −2.0218 0 −2.0218 −2.0218 −2.0218 −2.0218 −2.0218 −2.0218 −2.0218 −2.0218 −2.0218 −2.0218
Std 2.2E−15 1.4E−15 0 1.4E−15 1.3E−15 2.2E−12 1.4E−15 1.4E−15 3E−07 9.1E−16 4.1E−11 1.1E−15 1.3E−15
Rank 15 2 26 2 2 16 2 2 21 2 18 2 2

𝐹44 Avg −106.76 −106.76 0 −106.76 −106.76 −106.76 −106.25 −106.76 −106.76 −106.76 −106.76 −106.76 −106.76
Std 1.2E−07 9.2E−15 0 1.8E−14 2.2E−14 4.5E−06 1.428 2.3E−14 0.00016 1.2E−14 9.2E−15 8.7E−15 2E−14
Rank 15 1 26 7 7 16 24 7 17 7 1 1 7

𝐹45 Avg −1.0316 −1.0316 0 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316
Std 9.5E−12 6.8E−16 0 6.8E−16 6.8E−16 2.7E−09 6.8E−16 6.8E−16 9.1E−09 4.5E−16 6.6E−16 6.8E−16 6.7E−16
Rank 15 1 26 1 1 17 1 1 18 1 1 1 1

(continued on next page)
is found. To determine its comparative performance, the Friedman test
is performed. According to the Friedman test, HBO is the 9th best
algorithm, which is better than its position for unimodal functions. By
comparing its performance on both types of functions, we may conclude
that HBO has better exploration capability than exploitation capability.
22
To check its balance, the performance of HBO is also evaluated
on CEC-BC-2017 benchmarks. Out of 29 benchmarks, HBO is a top 5
algorithm for 14 of these benchmarks, and its position according to the
Friedman mean rank test is 3rd. Only MPA and FBI performed better
than HBO on the CEC-BC-2017 benchmarks. This shows that HBO has
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Table 9 (continued).
Fn Stats SMA TFWO SROA BMO MRFO STSA AEFA MA AOA GNDO PPA FBI BCMO

𝐹46 Avg 0.39789 0.39789 0 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Std 5.8E−10 0 0 0 0 1E−07 0 0 3.6E−16 0 0 0 0
Rank 19 2 1 2 2 20 2 2 16 17 2 2 2

𝐹47 Avg −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8622 −3.8628 −3.8628
Std 3.8E−08 2.3E−15 2.3E−15 2.2E−15 2.2E−15 6.8E−07 2.3E−15 2.3E−15 9.4E−14 1.8E−15 0.00173 2.3E−15 2.3E−15
Rank 16 1 1 1 1 17 1 1 15 1 20 1 1

𝐹48 Avg −3.2363 −3.2507 −3.322 −3.2882 −3.2744 −3.2505 −3.322 −3.2839 −3.3071 −3.2649 −3.295 −3.322 −3.2411
Std 0.05451 0.05945 4.5E−16 0.06325 0.05945 0.05941 4.4E−16 0.0566 0.04104 0.06062 0.05027 5E−06 0.0566
Rank 21 17 1 10 12 18 1 11 8 14 9 5 20

𝐹49 Avg −2.0626 −2.0626 0 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626 −2.0626
Std 1.5E−11 9.1E−16 0 9.1E−16 9.1E−16 1.1E−09 9.1E−16 9.1E−16 1E−09 1.4E−15 9.1E−16 9.1E−16 9.1E−16
Rank 16 1 26 1 1 18 1 1 17 1 1 1 1

𝐹50 Avg 1 1 0 1 1 1 1.00002 1 1 1 1.00001 1 1
Std 0 0 0 0 0 0 3.5E−05 0 0 0 3.2E−05 0 0
Rank 2 2 1 2 2 2 25 2 2 20 23 2 2
Fig. 8. Schematic views of engineering problems: (a) speed-reducer design problem, (b) tension/compression spring design, (c) rolling-element bearing design, and (d) multiple-disk
clutch brake design.
very good balance mechanism and perhaps this is the reason behind its
average exploitation capabilities. Finally, its applicability to real-world
problems is evaluated using 4 engineering problems. HBO outperforms
all other algorithm on two problems and is 2nd and 3rd best on the
other two problems. Moreover, HBO ranks first in the list according to
the Friedman test, thus demonstrating its excellent optimization skills
on real-word constrained problems. Based on the comparative results
and our findings, we recommend HBO for complex and real-world
constrained problems because it has excellent balance; however, for
problems where better exploitation is required, HBO may not be an
ideal option. Our findings give direction to the research community on
the aspects of this algorithm require further improvement.

5.2. Performance of PO

The performance of PO on unimodal functions is excellent, as pre-
sented in Table 6. For 16 of 25 unimodal functions, the global optimum
is found using PO. In analysing its comparative performance, there are
only 3 unimodal functions for which PO is not in top 10. Based on
the results of the Friedman test presented in Fig. 3, PO ranks second.
Only GBO is better than PO in this list. Considering its excellent perfor-
mance, we also analyse the convergence behaviour of PO on unimodal
23
function, as shown in Fig. 4. As seen, PO has an excellent convergence
speed, and the best positions are reached in half of the iterations.
However, for 𝐹19, PO converges prematurely. We can conclude from
the comparative analysis that PO has excellent exploitation capability
and is recommended for the problems having no or fewer local optima.
Furthermore, to analyse the exploration capability, the results on mul-
timodal functions are presented in Table 8. PO outperforms all other
algorithms on 13 multimodal benchmark functions, and there is only
one benchmark for which PO is not included in top 10. According to
the Friedman test presented in Fig. 5, PO is the best and is ranked
first. Its convergence behaviour is presented in Figure Fig. 6. According
to the results, PO shows outstanding convergence speed and finds the
most promising region in fewer iterations than the other algorithms.
However, it is evident from 𝐹26, 𝐹29, and 𝐹34 that PO gets stuck in
some local optimum, which is due to not providing sufficient time for
exploration. Based on its excellent performance, we highly recommend
PO for problems with local minima.

Moreover, the performance on complex functions is checked on
CEC-BC-2017 benchmarks, as shown in Table 10. The performance
of PO on complex functions drastically decreases. The Friedman test
shows that PO is the 16th best algorithm for CEC-BC-2017 benchmark
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Table 10
Comparison of the performance of HBO, PO, GPC, GBO, RDA, MPA, LFD, TSA, BWOA, ROA, ChOA, TSO, and EO for CEC-BC-2017 functions.

Fn Stats HBO PO GPC GBO RDA MPA LFD TSA BWOA ROA ChOA TSO EO

𝐹51 Avg 490.1832 6284.225 6.56E+08 1928.807 3895.069 100.0001 4.13E+09 2.98E+09 1.05E+09 5.75E+09 1.53E+09 5.73E+09 2835.628
Std 406.4005 4490.46 2.22E+08 1822.998 4086.156 9.95E−05 1.15E+09 2.82E+09 5.45E+08 1.33E+09 1.32E+09 3.37E+09 2836.865
Rank 4 16 20 8 14 1 24 23 21 26 22 25 10

𝐹52 Avg 301.9884 496.4448 3910.75 300 300.121 300 13179.94 10070.35 5685.21 20198.01 2322.536 12281.34 300
Std 3.133711 299.0156 1762.088 6.86E−14 0.271763 1.48E−09 3944.375 5879.9 2775 4865.122 730.5671 4372.856 3.8E−05
Rank 13 16 19 2 12 4 25 22 21 26 18 23 8

𝐹53 Avg 405.0895 405.6096 462.8461 400.0867 405.8066 400 661.3159 516.531 472.9854 801.3793 618.3492 707.7565 404.5132
Std 0.899104 0.759631 11.48758 0.192641 0.445851 1.18E−07 98.5527 112.1954 36.50607 145.1241 165.7755 178.1216 1.186692
Rank 11 12 20 3 13 1 24 22 21 26 23 25 9

𝐹54 Avg 512.3064 512.0532 538.319 527.7405 516.741 508.7288 569.598 561.0994 524.294 588.2685 556.8031 569.9563 510.3766
Std 3.662879 6.567678 4.687924 11.59847 3.197425 3.258824 10.49854 20.83961 6.903424 8.722404 8.216864 15.79674 3.828501
Rank 7 6 20 17 8 2 24 23 15 26 22 25 5

𝐹55 Avg 600 609.5841 620.5379 600.0696 600 600.0011 636.1653 629.7209 610.1235 654.9035 626.4831 640.9433 600.0336
Std 2.84E−07 16.22112 4.962298 0.161223 2.05E−05 0.003836 8.147344 14.7908 3.327668 5.440641 9.244737 14.79662 0.167621
Rank 1 18 21 9 2 6 24 23 19 26 22 25 7

𝐹56 Avg 724.9839 719.0217 770.3638 737.6339 731.6104 721.2798 822.2314 780.4222 721.3173 933.754 794.0629 807.3814 723.0608
Std 3.797462 3.943396 8.491221 10.34231 5.575558 4.178397 11.68376 24.4371 4.770791 44.51272 18.99426 20.93126 5.39879
Rank 7 2 21 14 13 4 25 22 5 26 23 24 6

𝐹57 Avg 812.2694 834.1004 825.2125 822.3268 814.8331 808.477 865.8275 844.5482 812.1495 883.8291 841.852 846.3078 812.4967
Std 4.756199 4.585033 3.458119 7.059269 4.700751 3.326294 7.549954 18.93194 4.011316 9.903009 7.611581 10.42799 5.178555
Rank 6 21 18 17 9 3 25 23 5 26 22 24 7

𝐹58 Avg 900 1562.54 1099.068 907.4759 900 900 1595.363 1396.554 938.6425 2105.081 1351.554 1546.42 900.0763
Std 0 334.5499 151.3889 25.07853 6.03E−09 3.1E−07 205.7607 437.7011 26.92796 269.7936 246.8689 262.9735 0.169339
Rank 1 24 20 11 3 4 25 22 17 26 21 23 7

𝐹59 Avg 1700.123 1863.125 1616.704 1912.783 1396.441 1365.543 2404.377 2118.773 1772.122 2771.599 2811.991 2436.181 1401.825
Std 143.9461 293.3702 163.1048 332.1394 197.7961 155.6582 190.5343 282.4205 182.9994 179.6725 201.5914 371.9854 298.8309
Rank 13 17 7 18 3 2 23 20 14 25 26 24 4

𝐹60 Avg 1102.972 1121.961 1155.29 1113.102 1103.715 1101.964 1541.127 2607.228 1304.689 1988.988 1308.626 3164.058 1106.23
Std 1.154806 37.87039 22.19321 15.14266 1.960145 0.979516 204.9977 2440.073 355.4252 401.3736 97.72729 2811.522 3.882114
Rank 2 14 17 8 4 1 23 25 19 24 20 26 5

𝐹61 Avg 97816.42 28195.66 314385 19590.56 15185.61 1212.518 92924297 1729484 1188993 1.57E+08 7811606 56286583 10819.58
Std 108255.4 24606.49 340278.6 16558.59 11713.33 26.32236 57539605 2186432 959491.5 81132243 7183716 1.93E+08 6545.101
Rank 15 11 17 10 7 1 25 21 20 26 23 24 4

𝐹62 Avg 2222.283 12374.34 9390.342 1583.617 13274.4 1304.898 23029.57 15837.85 9178.518 602818.4 25813.03 17922.27 8436.373
Std 1037.519 14057.79 8782.869 275.8515 11081.08 2.077764 43239.73 8421.645 3226.963 817878.8 14503.83 12949.83 7768.092
Rank 6 19 13 4 20 1 24 22 12 26 25 23 11

𝐹63 Avg 1461.153 1559.144 3998.492 1493.959 1492.468 1403.463 1754.114 3972.605 3133.318 1931.545 5665.297 1565.059 1461.125
Std 58.61203 57.81456 1153.372 38.46783 98.97256 2.012688 270.1925 1899.785 1931.127 646.8213 890.5835 78.57097 21.8247
Rank 7 13 23 11 10 1 16 22 20 18 25 14 6

𝐹64 Avg 1562.54 6094.563 2841.052 1592.413 2072.207 1500.512 6284.979 7792.69 2785.067 11807.64 11860.34 8458.244 1629.668
Std 46.5559 1252.925 993.2569 55.79981 1315.139 0.421037 3097.121 7043.54 1104.804 8207.902 8471.706 3698.167 85.7494
Rank 6 20 15 7 12 1 21 22 14 24 25 23 8

𝐹65 Avg 1602.442 1712.282 1758.216 1709.923 1636.62 1601.296 1899.213 1917.992 1813.3 2020.382 1976.301 2024.136 1668.53
Std 3.142476 150.3255 110.2967 99.61594 44.70945 0.842881 135.7121 160.252 108.4786 109.4418 102.137 136.9766 73.09599
Rank 2 11 17 10 6 1 21 22 19 25 23 26 7

𝐹66 Avg 1707.251 1957.639 1749.019 1733.49 1737.904 1717.77 1849.138 1832.811 1748.738 1906.686 1784.253 1808.884 1734.156
Std 8.661983 71.84736 6.178304 16.94806 29.60472 8.696369 43.92178 101.0715 18.87741 66.87943 15.75313 44.15852 13.08396
Rank 1 26 15 8 11 4 24 23 14 25 20 21 9

𝐹67 Avg 4424.523 23812.27 34106.74 6945.01 19313.25 1801.084 308577.7 24435.67 5117.987 1519106 57818.63 15763.01 13518.29
Std 2029.338 7006.224 12371.98 8674.125 11792.16 0.814174 586590.2 15809.44 2587.268 2414654 37842.21 16440.24 11324.63
Rank 5 20 23 10 19 1 25 21 6 26 24 18 16

𝐹68 Avg 1991.14 3747.232 9447.225 1967.164 8506.953 1900.853 20358.96 174013.6 3789.908 13840.45 20035.89 56658.12 1941.614
Std 156.6173 1896.778 4356.331 45.9652 9117.455 0.410787 30692.83 400558 1460.758 3862.236 4772.783 102549.5 19.96705
Rank 8 12 20 7 19 1 24 26 13 21 23 25 6

𝐹69 Avg 2000.025 2120.341 2074.603 2060.087 2001.526 2013.537 2141.312 2187.768 2055.538 2197.985 2237.948 2204.124 2032.153
Std 0.086437 94.20655 55.70844 52.9381 2.645725 10.11572 32.56463 99.07093 44.0393 42.57419 81.01238 56.1896 39.40424
Rank 1 20 17 13 2 6 21 23 12 24 26 25 9

𝐹70 Avg 2263.182 2311.066 2273.989 2273.922 2278.852 2200 2263.375 2325.811 2281.853 2288.708 2317.86 2322.966 2298.302
Std 55.54827 9.882577 59.26274 61.37039 53.75626 1.13E−05 27.81748 52.57447 49.38467 31.52931 57.2391 46.8159 37.30676
Rank 5 21 9 8 10 1 6 26 11 14 24 25 17

(continued on next page)
functions. The reason behind such degradation is perhaps its premature
convergence on complex benchmarks. It is recommended to enhance
the duration of the exploration phase and better control the transition
between exploration and exploitation. Finally, the performance of PO
on engineering problems can be seen in Table 12. As can be seen,
24
the performance of PO on all these problems is average. According to
the results of the Friedman test presented in Fig. 9, PO ranks eight,
which is above average. Conclusively, based on our findings, we highly
recommend PO for problems with simple to average level complexity;
however, problems having very challenging landscapes, PO may not be



A. Alorf Engineering Applications of Artificial Intelligence 117 (2023) 105622
Table 10 (continued).
Fn Stats HBO PO GPC GBO RDA MPA LFD TSA BWOA ROA ChOA TSO EO

𝐹71 Avg 2297.96 2300.425 2396.995 2302.177 2296.873 2278.482 2642.62 2572.047 2350.045 2823.891 3115.422 2735.962 2300.808
Std 12.90143 0.195162 27.21597 1.236683 17.85329 40.13945 165.0893 359.8853 25.91404 166.1585 707.624 358.0728 0.370325
Rank 6 10 21 13 5 2 23 22 18 25 26 24 11

𝐹72 Avg 2613.785 2615.945 2646.967 2625.883 2612.147 2602.277 2687.492 2696.26 2645.8 2701.122 2656.887 2688.181 2614.094
Std 3.429981 9.607836 3.527403 11.17619 4.455717 42.30506 10.62747 29.25329 12.1264 16.50191 6.596816 38.94117 4.785548
Rank 7 9 21 15 5 1 23 25 20 26 22 24 8

𝐹73 Avg 2666.326 2744.902 2778.816 2720.113 2731.727 2496.042 2763.954 2825.166 2752.475 2807.444 2786.724 2828.938 2731.774
Std 103.0306 10.01287 46.46992 88.92833 69.41559 35.24447 54.9513 29.3312 34.89563 44.08796 24.58464 63.6196 48.69148
Rank 4 16 22 10 13 1 21 25 17 24 23 26 14

𝐹74 Avg 2918.958 2935.728 2973.192 2927.37 2931.35 2885.835 3159.408 3025.027 2962.916 3300.85 3018.828 3307.842 2924.203
Std 22.60715 19.42267 41.10646 23.46776 22.9192 59.54181 62.36042 109.2656 15.0015 85.69573 71.5899 205.0728 69.71974
Rank 5 15 21 10 12 2 24 23 20 25 22 26 8

𝐹75 Avg 2896.601 2866.686 3107.439 2960.232 2935.075 2784.002 3465.199 3781.462 3273.271 3577.879 3960.879 3963.486 3013.578
Std 45.92145 64.98878 38.32045 75.26882 49.7426 114.3089 130.3795 491.5128 176.7573 144.089 331.5911 445.8474 244.829
Rank 5 4 18 10 7 2 22 24 21 23 25 26 13

𝐹76 Avg 3091.521 3091.878 3099.694 3102.468 3090.936 3089.002 3131.713 3165.256 3156.212 3169.679 3099.198 3207.521 3093.33
Std 2.186673 2.510503 1.160699 17.47848 1.62159 0.420016 18.1191 39.72729 26.48638 21.61066 3.519101 85.10597 3.88895
Rank 4 5 12 14 2 1 21 23 22 24 11 25 6

𝐹77 Avg 3175.441 3403.789 3310.086 3342.671 3249.93 3088 3450.537 3485.996 3513.346 3551.503 3244.486 3615.625 3369.545
Std 60.1842 28.33745 80.44659 154.704 122.5476 59.99946 73.21388 200.5359 191.5404 76.45879 6.855988 198.6262 102.1119
Rank 3 20 15 17 8 2 21 22 23 24 6 25 18

𝐹78 Avg 3187.746 3159.188 3203.782 3225.015 3162.871 3143.532 3337.106 3310.839 3217.667 3411.19 3355.304 3444.17 3176.761
Std 13.85019 22.86039 33.38168 59.82597 12.97373 8.602191 61.72347 85.48284 37.71558 73.99094 63.24614 119.3953 30.85855
Rank 8 2 12 16 3 1 22 21 14 24 23 25 5

𝐹79 Avg 52273.1 644183.4 556078.7 463298.1 273232.2 3397.648 3990463 2508076 857367.1 10166346 3793386 8442589 403991.7
Std 62770.51 452738.5 307908.6 625252.6 373689.5 3.855551 2969231 4205999 1321808 4063393 3507908 10133554 588613.9
Rank 3 18 16 15 8 1 23 20 19 25 22 24 14
Fig. 9. Friedman mean ranks of all algorithms for engineering optimization problems.
an ideal option. we suggest that the research community work on its
balance to utilize this algorithm for highly challenging problems.

5.3. GPC performance

As in Table 6, the global optimum could not be obtained for any
unimodal function using GPC. There are only 2 functions for which GPC
could ranks among the top 5 algorithms. According to the Friedman
test, its rank is 17th on the list, which is below average. Based on these
facts, we can say GPC does not have very good exploitative capabilities.
However, for 3 multimodal functions, the global optimum is found.
GPC ranked in the top ten for only 8 functions. The Friedman rank of
GPC is 22nd, which is truly very poor. Hence, we may conclude that
the exploration capability of GPC is in need of serious improvement.
Furthermore, the performance of GPC on the CEC-BC-2017 benchmarks
is also very poor and below average. There are only two functions
25
for which GPC ranked among the top ten. The Friedman rank of GPC
for the CEC-BC-2017 benchmarks is 21st, which is also very poor.
However, for engineering problems, GPC ranks 20th.

Based on the above findings, we conclude that GPC has an over-
all weak exploitation and exploration capabilities. Furthermore, its
balance between exploitation and exploitation is also very weak. Work-
ing to improve the exploration and exploitation capabilities of this
algorithm could be a good future direction.

5.4. Performance of GBO

The results show that a global optimum is found for 8 unimodal
functions using GBO, and there are no unimodal functions for which
GBO does not rank among the top 10. This is also evident from
the Friedman mean rank test, where GBO ranked first on the list.
The convergence comparison presented in Fig. 4 shows that GBO is a
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Table 11
Comparison of the performance of SMA, TFWO, SROA, BMO, MRFO, STSA, AEFA, MA, AOA, GNDO, PPA, FBI, and BCMO for CEC-BC-2017 functions.

Fn Stats SMA TFWO SROA BMO MRFO STSA AEFA MA AOA GNDO PPA FBI BCMO

𝐹51 Avg 7606.598 3298.899 100.0009 3344.493 2825.001 30316362 643.1859 4189.729 47596410 1582.072 300.0749 3169.954 1032.073
Std 4321.063 3161.986 0.000477 3572.838 3313.91 23175043 632.738 4257.973 46088698 1900.742 220.8147 3183.31 1167.093
Rank 17 12 2 13 9 18 5 15 19 7 3 11 6

𝐹52 Avg 300.0039 300 300 613.2301 300 386.7291 12860.49 300 4275.476 300.0142 300 300.0031 367.1514
Std 0.004465 5.68E−14 3.29E−06 386.7642 1.2E−11 33.44695 4505.818 2.59E−07 1757.771 0.071024 2.36E−05 0.008194 149.4064
Rank 10 1 7 17 3 15 24 5 20 11 6 9 14

𝐹53 Avg 407.6406 402.4963 400.1038 407.3567 401.3236 409.3788 407.1461 400.0531 421.143 410.3759 400.1419 400.4197 404.6225
Std 10.26746 1.235106 0.146191 12.22129 0.683112 0.813251 0.185356 0.030619 18.90428 15.96927 0.318736 0.262025 2.221617
Rank 16 8 4 15 7 17 14 2 19 18 5 6 10

𝐹54 Avg 517.9304 516.9271 510.0694 531.0426 521.4911 526.1825 504.7758 519.5187 541.3666 529.3711 523.9984 509.9561 523.1626
Std 8.226363 7.089799 2.433923 12.82868 8.324389 5.621679 2.584978 13.04707 5.49411 11.11694 10.22481 2.011018 9.229165
Rank 10 9 4 19 12 16 1 11 21 18 14 3 13

𝐹55 Avg 600.0837 600 600.0003 609.119 601.9358 603.7734 600.0632 600.1336 601.7969 607.6605 610.8827 600.0002 600.1117
Std 0.031481 4.59E−05 0.000199 11.16591 3.78755 1.071607 0.164181 0.167772 0.988059 8.396949 5.897178 0.000315 0.286284
Rank 10 3 5 17 14 15 8 12 13 16 20 4 11

𝐹56 Avg 725.5457 726.9392 720.4998 764.4812 746.611 746.2572 713.3456 727.5141 743.5818 740.1235 743.1525 727.7597 731.2314
Std 7.701321 7.777355 2.637299 19.66585 15.5968 4.951313 1.497994 9.773385 6.521981 10.34752 16.8999 3.580526 9.793137
Rank 8 9 3 20 19 18 1 10 17 15 16 11 12

𝐹57 Avg 814.3685 816.6755 807.9951 825.7495 819.5352 815.8705 804.0992 818.8989 831.9665 819.9787 821.5309 809.4219 815.3224
Std 6.180948 7.077947 1.91638 6.195672 7.487354 4.035123 1.706966 9.079606 5.298126 6.311762 8.254118 3.178191 6.079285
Rank 8 12 2 19 14 11 1 13 20 15 16 4 10

𝐹58 Avg 900.0195 903.8817 900.0001 999.8752 912.7819 902.8538 900 914.5807 915.2008 928.9462 1011.677 900.1198 909.8064
Std 0.09091 10.25001 0.000262 97.02065 26.76818 0.920001 0 22.31907 15.8286 26.89929 136.2516 0.202605 11.15957
Rank 6 10 5 18 13 9 1 14 15 16 19 8 12

𝐹59 Avg 1623.421 1575.597 1294.895 2120.418 1830.829 1673.736 2023.857 1631.836 2275.314 1652.146 1842.374 1469.379 1664.884
Std 268.9201 206.3863 94.68404 305.596 342.168 214.9122 349.8226 288.4642 238.8184 284.0637 282.9398 109.1845 298.5812
Rank 8 6 1 21 15 12 19 9 22 10 16 5 11

𝐹60 Avg 1194.287 1112.292 1103.071 1119.06 1114.437 1115.826 1327.282 1118.399 1489.445 1135.722 1130.357 1106.786 1117.522
Std 82.83907 7.66638 1.204941 13.85217 11.0854 5.260174 298.3339 16.22883 342.0761 21.88504 22.96259 3.574882 12.55076
Rank 18 7 3 13 9 10 21 12 22 16 15 6 11

𝐹61 Avg 62444.13 17107.4 1565.02 239022.3 14732.74 86820.85 1132383 15715.13 2563928 2399.172 75238.09 12480.87 378036.2
Std 53354.94 14369.13 111.902 357410.5 12809.53 78655.71 1269509 15064.36 1710120 1626.524 335984 6983.591 540261
Rank 12 9 2 16 6 14 19 8 22 3 13 5 18

𝐹62 Avg 10569.79 4793.303 1311.011 13802.75 2938.143 10739.98 10827.2 5174.324 11248.51 1347.409 1665.766 4312.033 10545.17
Std 11650.1 2755.747 2.046288 9337.524 1391.718 8995.853 3819.171 4525.821 2958.699 75.64731 662.619 2488.008 5857.996
Rank 15 9 2 21 7 16 17 10 18 3 5 8 14

𝐹63 Avg 1530.499 1423.729 1419.137 5149.824 1470.673 1759.822 6272.002 3631.739 1709.358 1416.366 1442.692 1465.031 2290.916
Std 237.886 13.56827 5.20533 3794.42 21.10761 874.7007 3103.304 2541.138 295.7538 9.864172 18.60594 22.43568 2263.383
Rank 12 4 3 24 9 17 26 21 15 2 5 8 19

𝐹64 Avg 2500.385 1519.375 1502.346 4394.685 1666.342 1926.283 15650.27 3166.502 3455.548 1510.332 1539.068 1631.487 4041.162
Std 1540.392 18.31846 0.673629 2786.728 122.5051 841.3384 8648.41 3199.511 2411.295 18.1888 23.4764 88.46547 3852.233
Rank 13 4 2 19 10 11 26 16 17 3 5 9 18

𝐹65 Avg 1673.861 1729.304 1609.976 1837.152 1685.951 1626.912 2018.107 1773.354 1744.394 1712.379 1731.055 1614.692 1718.296
Std 84.38173 108.9607 14.41311 148.3391 111.1619 33.58275 113.5745 127.0501 91.78311 119.9915 82.16766 35.2002 122.5069
Rank 8 14 3 20 9 5 24 18 16 12 15 4 13

𝐹66 Avg 1754.199 1733.397 1711.154 1744.136 1736.947 1727.169 1817.574 1757.463 1776.373 1749.288 1746.181 1717.577 1732.755
Std 42.91564 27.08818 6.691305 14.95226 19.38154 12.85099 74.60866 52.12585 17.85783 19.00683 19.61334 6.605743 24.64731
Rank 17 7 2 12 10 5 22 18 19 16 13 3 6

𝐹67 Avg 24657.55 5293.945 1821.141 14930.46 5773.317 11449.91 12152.03 8374.326 10432.07 1835.227 1999.234 5392.407 13225.5
Std 15175.39 5075.86 0.372846 11380.95 4499.6 7809.646 7029.241 9156.106 4901.003 26.92495 353.8455 2596.009 10786.92
Rank 22 7 2 17 9 13 14 11 12 3 4 8 15

𝐹68 Avg 8214.177 1909.161 1902.02 7024.125 2040.777 4970.598 19797.36 3944.018 3731.652 1902.747 1927.017 2073.684 7241.917
Std 7865.397 8.271678 0.283544 6345.979 158.7669 4659.91 20128.94 4059.141 1231.881 1.293865 21.57575 127.1339 5226.907
Rank 18 4 2 16 9 15 22 14 11 3 5 10 17

𝐹69 Avg 2024.611 2007.965 2003.626 2114.928 2037.091 2021.61 2178.582 2105.876 2065.81 2064.08 2061.557 2005.748 2035.954
Std 10.35314 8.917933 3.518017 64.36423 52.05721 6.398866 84.11337 91.24301 17.88163 53.15708 36.95318 5.406635 42.70083
Rank 8 5 3 19 11 7 22 18 16 15 14 4 10

𝐹70 Avg 2306.558 2312.655 2287.522 2307.546 2231.547 2216.94 2306.7 2317.129 2264.08 2293.435 2287.934 2205.099 2290.298
Std 46.54527 35.46436 46.42583 47.99783 52.75725 38.34587 1.956324 20.54887 38.32121 53.84695 55.84746 22.81764 51.78405
Rank 18 22 12 20 4 3 19 23 7 16 13 2 15

(continued on next page)
little slower than the other algorithms but very good in avoiding the
premature convergence. Based on these facts, we recommend GBO for
problems requiring exploitative capabilities. Similarly, the performance
of GBO on multimodal functions is also promising. GBO manages to
find global optimum for 13 multimodal benchmarks, and its Friedman
26
mean rank is 2nd on the list, as can be seen in Fig. 5. Considering the
good performance of GBO, we also compare its convergence curve in
Fig. 6. It is found that GBO has better convergence speeds, as seen for
𝐹29, 𝐹30, 𝐹34, and 𝐹41. However, there is no significant improvement
after a certain point for 𝐹26, 𝐹31, 𝐹33, and 𝐹40, which indicates the
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Table 11 (continued).
Fn Stats SMA TFWO SROA BMO MRFO STSA AEFA MA AOA GNDO PPA FBI BCMO

𝐹71 Avg 2358.252 2348.082 2261.413 2296.823 2299.733 2310.974 2300.014 2299.956 2375.416 2302.155 2308.487 2281.122 2304.174
Std 277.3053 220.7666 41.85207 17.05483 11.66904 17.91979 0.069578 15.48488 145.0803 22.55254 19.70045 26.64845 8.630459
Rank 19 17 1 4 7 16 9 8 20 12 15 3 14

𝐹72 Avg 2620.066 2628.964 2613.499 2623.92 2620.126 2634.795 2609.808 2623.625 2641.453 2626.668 2610.152 2605.564 2623.215
Std 6.34414 10.56336 2.901299 10.46538 10.44512 5.867474 4.516451 8.245977 7.78314 11.60617 94.36833 45.85793 9.724722
Rank 10 17 6 14 11 18 3 13 19 16 4 2 12

𝐹73 Avg 2758.052 2762.607 2552.969 2717.308 2695.411 2674.986 2726.19 2753.65 2730.695 2738.595 2710.111 2603.523 2716.201
Std 10.04007 12.65155 82.21613 87.65126 110.8951 119.034 41.40668 9.166319 56.67153 80.00159 108.7195 107.6309 96.87489
Rank 19 20 2 9 6 5 11 18 12 15 7 3 8

𝐹74 Avg 2935.518 2937.496 2897.8 2930.322 2922.728 2918.435 2946.968 2942.657 2952.638 2925.003 2932.144 2877.411 2921.915
Std 30.41462 35.56216 0.276127 21.80103 23.58915 19.61096 7.38688 16.60653 8.334292 27.25783 22.87149 67.63731 24.02159
Rank 14 16 3 11 7 4 18 17 19 9 13 1 6

𝐹75 Avg 3106.959 3081.656 2731.123 2920.356 2936.977 2997.269 2937.559 3082.838 3239.804 3167.757 3042.16 2836.786 3013.46
Std 374.4171 332.8232 98.18498 92.68205 83.06238 14.18849 290.7551 318.7536 221.5012 287.4697 186.4978 88.93525 108.1582
Rank 17 15 1 6 8 11 9 16 20 19 14 3 12

𝐹76 Avg 3091.083 3096.832 NA 3099.144 3104.352 3094.885 3109.091 3103.61 3126.966 3101.396 3114.938 3094.697 3106.775
Std 1.679054 2.89576 NA 8.784461 14.79162 0.948936 17.84627 11.29683 23.33072 7.852265 19.08049 2.986285 14.49388
Rank 3 9 NA 10 16 8 18 15 20 13 19 7 17

𝐹77 Avg 3320.414 3272.96 NA 3304.373 3232.552 3227.357 3395.9 3301.824 3297.503 3269.79 3244.509 3067.869 3250.528
Std 170.6187 174.8919 NA 128.0299 143.0811 57.60398 23.62254 139.3344 4.739379 139.7099 140.6487 114.1577 131.7452
Rank 16 11 NA 14 5 4 19 13 12 10 7 1 9

𝐹78 Avg 3188.048 3218.736 NA 3279.103 3194.944 3181.361 3300.69 3251.31 3253.096 3171.512 3214.621 3183.755 3191.985
Std 47.04296 52.78331 NA 60.60623 32.28143 6.799227 107.0045 74.85839 13.37302 27.31913 58.81435 12.71354 24.74181
Rank 9 15 NA 19 11 6 20 17 18 4 13 7 10

𝐹79 Avg 254590.4 239203.3 NA 563419.1 282140.4 54133.74 2602977 362337.6 84781.42 381071.1 348602.1 17465.09 357497.1
Std 463442.3 356492.5 NA 915014 438302.4 30431.26 2555397 502094.9 122715.9 707056.5 563569.1 18628.79 536664.7
Rank 7 6 NA 17 9 4 21 12 5 13 10 2 11
Table 12
Comparison of the performance of all metaheuristics for engineering optimization problems.

Speed-reducer design problem

HBO PO GPC GBO MPA LFD TSA BWOA ROA ChOA TSO
Avg 2994.471 2997.263 9.08E+12 2994.471 3003.7 1.46E+17 3066.283 1.17E+11 9.32E+10 3207.645 3.59E+12
Std 1.83E−07 9.730802 1.47E+13 0.000249 4.900553 6.39E+15 20.45511 2.86E+11 2.06E+11 38.28001 9.57E+12
Rank 1 6 21 2 9 22 12 19 18 14 20

EO SMA TFWO MRFO STSA AEFA MA GNDO PPA FBI BCMO
Avg 3002.978 2995.331 2996.163 3062.041 3008.595 3600.423 2994.472 3079.201 6.76E+09 3407.515 3001.449
Std 9.248234 0.772008 7.902031 16.85486 5.745024 631.2908 0.002891 37.41254 3.38E+10 283.801 3.500226
Rank 8 4 5 11 10 16 3 13 17 15 7

Tension/compression spring design problem

HBO PO GPC GBO MPA LFD TSA BWOA ROA ChOA TSO
Avg 0.012846 0.013732 3.58E+18 0.012743 0.01269 6.38E+15 0.013381 8.44E+18 0.021939 0.014448 0.01395
Std 0.000186 0.001399 6.49E+18 7.11E−05 3.44E−05 3.19E+16 0.000653 2.37E+19 0.005192 0.001668 0.000982
Rank 3 12 20 2 1 19 8 22 18 14 13

EO SMA TFWO MRFO STSA AEFA MA GNDO PPA FBI BCMO
Avg 0.013093 0.015481 0.013453 0.013536 0.012993 4.42E+18 0.012863 0.013539 0.014695 0.014466 0.013304
Std 0.000626 0.001886 0.001416 0.000616 0.000613 7.64E+18 0.000203 0.000918 0.002535 0.000608 0.000924
Rank 6 17 9 10 5 21 4 11 16 15 7

Rolling-element bearing design problem

HBO PO GPC GBO MPA LFD TSA BWOA ROA ChOA TSO
Avg −85533.2 −82111.9 −81147.2 −85454.4 −85417.7 65535 −83341.8 −26407.8 4E+20 −73648.8 −79930.4
Std 0.071121 6534.939 2943.444 248.1417 209.3727 1316.682 13120.36 7.78E+20 7406.883 3140.749
Rank 1 9 11 3 4 18 8 17 21 15 13

EO SMA TFWO MRFO STSA AEFA MA GNDO PPA FBI BCMO
Avg −85106.5 −84753.7 −81460 −73795.3 −84638.2 1.53E+21 −85471.4 −52848.4 2.26E+20 4.57E+18 −80283.5
Std 380.3849 2430.003 4311.156 3331.534 317.4404 2.12E+21 222.9589 14448.35 5.93E+20 1.56E+19 3469.081
Rank 5 6 10 14 7 22 2 16 20 19 12

Multiple disk-clutch brake design problem

HBO PO GPC GBO MPA LFD TSA BWOA ROA ChOA TSO
Avg 0.314911 0.319327 0.374623 0.320425 0.350633 3.7E+13 0.331565 0.404669 NA 0.395021 0.451962
Std 0.003529 0.010346 0.04115 0.017349 0.04523 2.21E+12 0.036396 0.063555 NA 0.034318 0.08019
Rank 2 4 13 5 11 21 8 15 NA 14 16

EO SMA TFWO MRFO STSA AEFA MA GNDO PPA FBI BCMO
Avg 0.328355 0.333863 0.324307 0.374201 0.313657 0.600283 0.319302 0.695313 0.50994 0.561302 0.33544
Std 0.018846 0.02554 0.012727 0.037894 1.7E−16 0.115077 0.00872 0.138565 0.109947 0.161422 0.022122
Rank 7 9 6 12 1 19 3 20 17 18 10
27
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unbalanced behaviour of GBO. It is also evident from its performance
on the CEC-BC-2017 complex benchmarks. According to the Friedman
test presented in Fig. 7, GBO ranks 9th. A very good performance on
unimodal and multimodal benchmarks and comparatively low perfor-
mance on complex benchmarks indicates that GBO does not have very
good balance among exploration and exploitation. We encourage the
research community to take this as a future direction and improve GBO
from this perspective. Finally, the performance of GBO on engineering
problems is also very promising and according Friedman test, it is
ranked as 2nd best algorithm after HBO.

Based on the above facts, GBO is highly recommended for engineer-
ing and other optimization problems; however, its balance on complex
problems needs to be improved. Hence, the balance enhancement of
GBO may be considered as a future direction.

5.5. Performance of RDA

As shown from the results of the unimodal functions in Table 2, RDA
is one of the worst performing algorithms. It could hardly manage to
reach the top 10 for any of the benchmarks. According to the Friedman
test, its rank is 23rd on the list. Furthermore, its performance on
multimodal functions is one of the worst. According to the Friedman
test, its rank is 25th in the list. However, the performance of RDA
is remarkably better on the complex benchmarks of CEC-2017. Its
position, according to Friedman mean rank test is 6th in the list, which
is opposite of its previous performances.

Based on the above findings, we conclude that RDA has a very
good balance among exploration and exploitation but needs serious
improvements on its exploitation and exploration capabilities. This may
be the limitation of underlaying mathematical model; however, we
recommend this as open direction for researchers to investigate.

5.6. Performance analysis of MPA

The performance of MPA on unimodal functions is above average
and ranks in top ten in most of the cases. Thus, it secures the 8th
position in the ranking list generated using the Friedman test. Please
see Table 6 and Fig. 3 for the reference. Its performance on multimodal
functions is even better, and according to Friedman test, its position is
5th on the list. Although, the performance of MPA on unimodal and
multimodal functions is above average, it is not extraordinary; how-
ever, its results on CEC-BC-2017 are superior because it outperforms
all competitors and secures 1st position in list generated by Friedman
test. Please see Table 10 and Fig. 7 for the reference. Finally, the
performance of MPA on engineering problems is also above average.
On the tension/compression spring design problem, it outperforms all
other algorithms.

Based on the above discussion, we highly recommend MPA for com-
plex real-world problems requiring good balance among exploration
and exploitation; however, we also suggest that researchers work on
enhancing its exploration and exploitation capabilities.

5.7. Performance analysis of LFD

The exploitation capability of LFD, as demonstrated in Table 6, is
found to be very poor. Except for 𝐹16 and 𝐹21, LFD does not rank
mong the top 10 positions. According to the Friedman test, the rank
f LFD is 20th in the list. Its performance on multimodal functions is
omewhat better but still below average. The algorithm is in the 18th
osition on the rank list generated by the Friedman test. Hence, we
an conclude the overall exploration and exploitation capabilities of
FD need serious improvement. When we consider the case of complex
unctions, the performance of LFD is worse. The position of LFD in rank
ist generated by the Friedman test is 23rd, which is 3 positions above
he last position. For the case of the engineering problem, LFD is found
o have the worst performance. Based on this discussion, we conclude
hat LFD is truly very weak from all aspects.
28
5.8. Performance analysis of TSA

The performance of TSA on the individual level is sufficient for
many unimodal functions, but its comparative performance is below
average. According to the Friedman test, TSA ranks 19th position
for unimodal functions. The results and ranking both can be seen in
Table 6 and Fig. 3, respectively. On the other hand, its performance
on multimodal functions is much worse. The position of TSA on the
rank list generated by the Friedman test is 23rd. Furthermore, its poor
performance is also noted on CEC-BC-2017 benchmarks, where the rank
of TSA is 24 of 26. However, the performance of TSA on engineering
problems can be rated as average because it is ranked 11th. Based on
these results, we declare that TSA is a below-average algorithm with
poor exploration and exploitation capabilities. Furthermore, its balance
between exploration and exploitation requires serious improvement.

5.9. Performance analysis of BWOA

The performance of BWOA is found to be below average compared
to the other algorithms regardless the underlying benchmark set used
for the evaluation. According to the Friedman mean rank test, BWOA
ranks 25th in the case of unimodal functions, 17th in the case of mul-
timodal functions, 19th in the case of CEC-BC-2017 benchmarks, and
19th on engineering optimization problems. It is all evident from the re-
sults presented in previous section. Based on these results, we conclude
that BWOA has comparatively poor exploitative and exploratory capa-
bilities. Furthermore, its balance between exploration and exploitation
is weak. There are many improvement potentials for this algorithm.
This algorithm can be chosen for future study with an ultimate goal of
improving its exploration and exploitation capabilities.

5.10. Performance analysis of ROA

In all experiments, regardless of the benchmark set used for evalu-
ation, the worst performance is achieved using ROA. The rank of ROA
on unimodal functions is 26th (last), on multimodal functions is 26th
(last), on CEC-BC-2017 benchmarks is 26th (last), and on engineering
problems is second to last. The reason behind its poor performance
is obviously its poor optimization capabilities. A very good future
direction will be to critically analyse the behaviour and mathematical
model of ROA and address the root cause of this behaviour.

5.11. Performance analysis of ChOA

The comparative performance of ChOA is also not very promising
in most of the cases. ChOA attains the 17th position on unimodal
functions, 24th position on multimodal functions, 22nd position on
complex functions of CEC-BC-2017, and 13th position on engineering
problems. The overall performance is rated as below average; however,
on engineering problems the performance ChOA is average level. Im-
proving ChOA from the perspectives of exploration and exploitation can
be a potential future direction for researchers.

5.12. Performance analysis of TSO

The performance of TSO on unimodal as well as multimodal func-
tions mostly falls among the top ten algorithms. The rank of this
algorithm on unimodal functions is 10th and on multimodal functions is
11th. It should be noted that the performance of TSO at the individual
level is good; however, in comparison to the other algorithms, its
performance is a little lower. We can conclude from this that the
exploration and exploitation capabilities of TSO are sufficient, but there
is still potential for improvement. In contrast, the performance drasti-
cally falls on the CEC-BC-2017 benchmarks. The rank of TSO on CEC
functions is 25th, which shows that TSO has very poor balance between
exploration and exploitation. Finding the cause of this behaviour and
improving the balance between exploration and exploitation can be
future directions for the research community.
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5.13. Performance analysis of EO

The performance EO in part of the top 10 for most of the functions
regardless of the type of benchmarks. This indicates that this algorithm
has some good qualities in terms of its exploration and exploitation
capabilities. It attains 7th, 5th, 5th, and 6th positions against unimodal
functions, multimodal functions, CEC-BC-2017 benchmarks, and engi-
neering problems, respectively. Its consistent performance and above
average rank in all cases show that EO has comparatively better balance
than many other algorithms. However, EO does not outperform other
algorithms in any case, which shows its potential for improvement.
Based on its consistent and above average performance, we recommend
EO for different types of problems; however, we also recommend that
researchers investigate the areas that can be improved to increase the
performance of this algorithm.

5.14. Performance analysis of SMA

As presented in Tables 7 and 9, the overall performance of SMA
on unimodal and multimodal functions is very good, and it is ranked
4th for unimodal as well as multimodal functions. In both cases,
SMA is among the top 10 algorithms for most functions. However, its
performance on CEC-BC-2017 drops significantly, and SMA is ranked
14th on the rank table generated by the Friedman test. Similarly, its
performance on engineering problems is also of an average level, as
SMA is ranked 9th on the list. We may conclude from this discussion
that SMA can be a very good option for simple problems; however, it
struggles for complex problems, which may be due to its unbalanced
behaviour. SMA can be improved further by working on its balance
between exploration and exploitation. In addition, the convergence
behaviour of SMA is also assessed, and it is found that SMA has some
capability to escape local optima but converges prematurely in few
cases, as presented in Figs. 4 and 6.

5.15. Performance analysis of TFWO

The performance of TFWO is average for unimodal and multi-
modal functions, as shown in Tables 7 and 9. For 8 unimodal and
13 multimodal functions, TFWO ranks among the top ten algorithms.
According to the Friedman mean rank test, TFWO attains 15th position
for unimodal functions and 12th position for multimodal functions.
This means that compared with the other algorithms, TFWO has an
average level of exploration and exploitation capabilities. In contrast,
its performance on CEC-BC-2017 and engineering problems is much
improved, and the rank of TFWO is 8th on CEC benchmarks and
7th on engineering problems. Hence, we can conclude that TFWO
has better balance between exploration and exploitation and can be
used for complex or engineering problems. We suggest working on
its exploration and exploitation capabilities to improve the balance
between exploration and exploitation.

5.16. Performance analysis of SROA

As presented in Tables 7, 9, and 11, SROA has average performance
on unimodal and multimodal functions, while its performance on CEC-
BC-2017 benchmarks is truly very good. According to the Friedman
test, it attains the 12th, 13th, and 4th positions for unimodal, multi-
modal, and CEC benchmarks, respectively. The clear difference among
the ranks for CEC benchmarks and the other two types of functions
shows that SROA has balanced exploration and exploitation but both
capabilities individually need some improvements to compete with
other available algorithms. This analysis open up a research direction
for the research community to work on mathematical model of SROA
to further improve its exploration and exploitation capabilities at the
individual level.
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5.17. Performance analysis of BMO

For most unimodal and multimodal benchmark functions, BMO
ranks among the top algorithms. Its Friedman mean rank for unimodal
and multimodal functions are 5th and 7th, respectively. It is evident
from the results that the exploration and exploitation capabilities at
the individual level are much better; however, the performance deteri-
orates for CEC-BC-2017 benchmarks, as shown in Table 11 and Fig. 7.
Its rank of 18 for CEC-BC2017 benchmarks indicates that BMO has
comparatively poor balance between exploration and exploitation. The
algorithm may perform even better if the balance between exploration
and exploitation is improved.

5.18. Performance analysis of MRFO

In terms of overall performance, MRFO is one of the best algorithms.
There is hardly a unimodal or multimodal function for which MRFO
is not among the top ten algorithms. According to the Friedman test,
MRFO attains 3rd position for unimodal functions, 3rd position for
multimodal functions, and 7th position for CEC-BC-2017 benchmark
functions; however, its performance on engineering problems is aver-
age, and the rank attained by this algorithm for engineering problems
is 12th. Considering that MRFO yields good performance, the conver-
gence curves are also plotted, as shown in Figs. 4 and 6. In both figures,
it can be seen that MRFO has a good convergence speed in most cases;
however, it falls in local optima in few multimodal cases. Based on
our findings, we recommend MRFO for diverse-natured optimization
problems.

5.19. Performance analysis of STSA

The performance of STSA is average. On unimodal functions, it is
ranked 11th. On multimodal function, it ranks 16th, which may also
be considered average performance. However, on the CEC-BC-2017
benchmarks, its performance is above average, and it attains the 9th
position on the list. Similarly, its performance on engineering problems
is also promising, as it attains 4th position in the rank list generated
using the Friedman test. Based on these comparative results, STSA
may be considered a good candidate for engineering problems, but
the algorithm needs some improvements in its mathematical model to
perform well on problems from different domains.

5.20. Performance analysis of AEFA

AEFA is found to be one of the worst performers in most cases.
The Friedman ranks of this algorithm for unimodal, multimodal, CEC-
BC-2017 functions, and engineering problems are 24th, 21st, 17th,
and 24th, respectively. We can conclude from these results that the
exploration and exploitation capabilities along with the required bal-
ance between exploration and exploitation are very weak, and serious
changes are required for improvement.

5.21. Performance analysis of MA

Based on the results presented in Tables 7, 9, and 11, we can
conclude that the performance of MA is average. This algorithms attains
16th, 17th, and 15th ranks on the unimodal, multimodal, and CEC-
BC-2017 benchmark functions. However, the performance of MA on
engineering problems is remarkably better, and it attains the 2nd
position according to the ranks generated by the Friedman mean rank
test. Based on these results, we recommend MA for engineering con-
strained optimization problems; however, to obtain the best results in
diverse areas, the algorithm needs improvements in its exploration and
exploitation capabilities, which may be considered a future direction.
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5.22. Performance analysis of AOA

On unimodal functions, AOA shows some good performance and
attains the 9th position in the ranking list of all 26 algorithms. How-
ever, on multimodal functions, the performance of AOA is average,
and it attains the 15th position according to the Friedman test. We
can conclude that this algorithm has better exploitation capabilities,
but its exploration capabilities need to be improved. Furthermore, its
exploration and exploitation balancing capabilities are below average,
as it attains the 20th position on the list. This means that AOA does not
have a good balance between exploration and exploitation. A potential
research direction may be to address these issues to obtain better
performance when using this algorithm.

5.23. Performance analysis of GNDO

The performance of GNDO is found to be poor on unimodal and
multimodal functions. It ranks 22nd and 20th on unimodal and mul-
timodal functions, respectively. These results show that GNDO needs
some serious revisions in its mathematical model to perform well on
these benchmarks. However, on the CEC-BC-2017 benchmarks and en-
gineering problems, the performance of GNDO is of average level, and
it ranks 12th and 13th on these functions and problems, respectively.

5.24. Performance analysis of PPA

According to the rank list generated by the Friedman test, PPA
attains the 21st, 20th, 11th, and 22nd positions on the unimodal,
multimodal, CEC-BC-2017 benchmarks, and engineering problems, re-
spectively. These ranks show that PPA has comparatively poor explo-
ration and exploitation capabilities. The balance between exploration
and exploitation is not that bad, which is evident from the results of
CEC-BC-2017 benchmark functions.

5.25. Performance analysis of BCMO

The overall performance of this algorithm is found to be aver-
age. According to the Friedman test, BCMO attains the 13th, 10th,
13th, and 9th positions on the unimodal, multimodal, CEC-BC-2017
benchmarks, and engineering constrained optimization problems, re-
spectively. Based on these results, we suggest improvements in the
mathematical model of this algorithm to improve its exploration and
exploitation capabilities.

5.26. Performance analysis of FBI

According to the results, FBI is found to be one of the best algo-
rithms compared in this study. As shown in Tables 7, 9, 11, FBI is
among the top 10 algorithms for most of the unimodal, multimodal,
and CEC-BC-2017 benchmark functions. According to the Friedman
mean rank test, it attains the 6th, 8th, and 2nd positions on these
sets of benchmarks, respectively. The algorithm demonstrates good
exploitation and exploration capabilities, especially the 2nd position on
CEC-BC-2017 benchmarks shows that algorithm has very good balance
between exploration and exploitation. However, the weakness of this
algorithm is shown on constrained engineering optimization problems,
where it attains the 17th position, which represents a below average
performance. Based on these findings, we recommend this algorithm
for unconstrained problems; however, we also recommend that the
research community makes appropriate changes in this algorithm to
make it suitable for constrained optimization problems, which may be
considered an open research direction.

5.27. Summary of the discussion

In this section, different types of benchmark functions and engi-
neering problems are used to evaluate the optimization capabilities of
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Table 13
Comparison of the ranking of the top 5 algorithms for each type of benchmark.

Algorithm Unimodal
functions

Multimodal
functions

CEC-BC-2017
functions

Engineering
problems

GBO 1 2 2
MPA 5 1 5
PO 2 1
HBO 3 1
MRFO 3 3
SMA 4 4
FBI 2
MA 2
SROA 4
STSA 4
BMO 5
EO 5

26 algorithms. The Friedman mean rank test is performed to rank the
algorithms in each category. Moreover, the convergence behaviour is
analysed by comparing the convergence curves of the top 5 algorithms
for selected unimodal and multimodal benchmarks. The top five algo-
rithms from each category, along with their ranks in each category,
are presented in Table 13. By comparing the ranks of algorithms in all
categories, GBO is declared to be the best optimizer because its rank
1st in one category and 2nd in two categories. MPA, which ranks 2nd
overall, ranks 1st in one category and 5th in two categories. The overall
third best algorithm is PO, which ranks 1st in one category and 2nd in
another category. The fourth best algorithm is HBO, which ranks 1st
in one category and 3rd in another category. Finally, MRFO may be
declared the fifth-best algorithm because it ranks 3rd in two categories.

Based on the overall rankings and category-based performances, we
make the following observations and recommendations:

• GBO is an algorithm with excellent exploitation and exploration
capabilities but slightly unbalanced behaviour for complex land-
scapes. We recommend improving GBO by improving the balance
between exploration and exploitation.

• MPA has an excellent balance between exploration and exploita-
tion at the expense of exploitation capability and convergence
speed. We recommend enhancing the convergence speed and
exploitation capability of MPA by making appropriate changes in
the position updating mechanism of this algorithm.

• PO has an excellent exploitation capability and outstanding con-
vergence speed. However, it may suffer from premature conver-
gence for complex landscapes due to an insufficient time for
exploration. It is recommended to enhance the duration of the
exploration phase and better control the transition between ex-
ploration and exploitation.

• HBO demonstrates a good balance between exploration and ex-
ploitation, which is evident from its performance for CEC-BC-
2017 functions and engineering problems, but it lacks a fast
convergence speed in an attempt to attain balance. Although HBO
has some mechanism to incorporate exploitation, the convergence
speed needs to be improved by making appropriate changes in the
position updating mechanism of this algorithm.

• MRFO has good exploration and exploitation capabilities, but
compared to GBO and PO, it is weaker. Moreover, its perfor-
mance is also affected by complex landscapes, which raises ques-
tions about its capability to balance exploration and exploitation.
We recommend that its capability to balance exploration and
exploitation be improved.

Based on the above findings and observations, we highly recommend
GBO, MPA, PO, and HBO to solve different real-world optimization
problems.
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6. Conclusion

In this paper, a review of recent developments in the field of
metaheuristics is presented. The optimization capability of 26 recently
published novel metaheuristics is analysed. Based on this analysis,
the top five algorithms with better exploitation capability, top five
algorithms with better exploration capability, top five algorithms with
better balance among exploration and exploitation, and top algorithms
with better capability to solve constrained engineering problems are
identified. Ultimately, a few observations in terms of the weaknesses
and strengths of the top five algorithms from each category are stated,
and based on these observations, some recommendations to further
improve these algorithms are made.

By thoroughly searching the literature and narrowing the relevant
articles, 57 novel metaheuristics are identified. Based on the avail-
ability of the source code, the performance of 26 metaheuristics is
evaluated by using 79 benchmarks, including 25 unimodal, 25 multi-
modal, and 29 CEC-BC-2017 benchmarks. Moreover, four constrained
engineering problems are also used to evaluate the applicability of the
algorithms to real-world problems. By using the Friedman’s mean rank
test, GBO, PO, MRFO, and SMA are found to be the top five performers
for unimodal functions, and PO, GBO, MRFO, SMA, and MPA are found
to be the top five performers for multimodal functions. Moreover, MPA,
FBI, HBO, SROA, and EO show more balanced behaviour, which is
evident from the results for CEC-BC-2017. Finally, HBO, GBO, MA,
31
STSA, and MPA demonstrate the best performance for engineering
problems.

Based on the accumulative performance, GBO, MPA, PO, and HBO
are found to be the top four algorithms and are recommended as
potential candidates for real-world optimization problems. Moreover,
it is recommended that the performance of GBO and PO be further im-
proved by improving the balance between exploration and exploitation.
In addition, the performance of MPA and HBO may be improved by
enhancing convergence speed and improving exploitation capability.
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Appendix

See Table A.14.

Table A.14
List of abbreviations used in the paper.

Abbreviation Definition

ACO Ant colony optimization
SA Simulated annealing
GA Genetic algorithm
EP Evolutionary programming
ES Evolutionary strategy
GP Genetic programming
AA Ant algorithm
DE Differential evolution
PSO Particle swarm optimization
ABC Artificial bee colony
FA Firefly algorithm
CS Cuckoo search
BA Bat algorithm
HS Harmony search
SCOA Social cognitive optimization algorithm
SC Society and civilization
BBBC Big bang-big crunch
ICA Imperialist competitive algorithm
GSA Gravitational search algorithm
TLBO Teaching learning-based optimization
FPA Flower pollination algorithm
SLCA Soccer league competition algorithm
GWO Grey wolf optimizer
WOA Whale optimization algorithm
SCA Sine cosine algorithm
VPSA Vibrating particles system algorithm
TGA Tree growth algorithm
CPA Cyclical parthenogenesis algorithm
WEA Water evaporation algorithm
TEOA Thermal exchange optimization algorithm
SHO Spotted hyena optimizer
HMSA Human mental search algorithm
FFA Farmland fertility algorithm
EOA Earthworm optimisation algorithm
RHA Rhino herd algorithm
QSA Queuing search algorithm
CTOA Car tracking optimization algorithm
SDMP Self-defense mechanism of the plants
COA Coyote optimization algorithm
SqSA Squirrel search algorithm
SOA Seagull optimization algorithm
HBIA Hitchcock bird-inspired algorithm
SLnO Sea lion optimization
EPC Emperor penguins colony
SFO Sailfish optimizer
BES Bald eagle search
NMR Naked mole-rat
BOA Butterfly optimization algorithm
HHO Harris hawks optimization
LGSI Ludo game-based swarm intelligence
PRO Poor and rich optimization
ExA Expectation algorithm
SMIA Social media inspired algorithm
SDO Supply-demand-based optimization
NPO Nomadic people optimizer
SMO Social mimic optimization
F3EA Find-fix-finish-exploit-analyze
DHOA Deer hunting optimization algorithm
BMO Barnacles mating optimizer
BSSA Bear smell search algorithm
BWOA Black widow optimization algorithm
CCLA Caledonian crow learning algorithm
ChOA Chimp optimization algorithm
CvOA Coronavirus optimization algorithm
DGBCO Dynamic group-based cooperative optimization

(continued on next page)
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Table A.14 (continued).
Abbreviation Definition

MRFO Manta ray foraging optimization
MPA Marine predators algorithm
MA Mayfly algorithm
PFDIBI Parallel fully dynamic iterative bio-inspired
PPA Parasitism predation algorithm
RDA Red deer algorithm
SSOM Shuffled shepherd optimization method
STSA Sine tree-seed algorithm
SMA Slime mould algorithm
TSA Tunicate swarm algorithm
WSA Water strider algorithm
BIOA Billiards-inspired optimization algorithm
DGO Darts game optimizer
KKOA Kho-kho optimization algorithm
HOGO Hide objects game optimization
AOA Archimedes optimization algorithm
AEFA Artificial electric field algorithm
BCMO Balancing composite motion optimization
BHMO Black hole mechanics optimization
DDAO Dynamic differential annealed optimization
EO Equilibrium optimizer
FNATRM Filter nonmonotone adaptive trust region method
GNDO Generalized normal distribution optimization
GBO Gradient-based optimizer
GPE Grey prediction evolution
LMQA Limited memory Q-BFGS algorithm
MSA Momentum search algorithm
NMA Newton metaheuristic algorithm
PSA Photon search algorithm
QIA Quantum-inspired algorithm
TSO Transient search optimization
TFWO Turbulent flow of water-based optimization
VLE Vapor-liquid equilibrium
VEA Volcano eruption algorithm
AISA Adolescent identity search algorithm
FBI Forensic-based investigation
GPC Giza pyramids construction
GTOA Group teaching optimization algorithm
HBO Heap-based optimizer
HDOA Human dynasties optimization algorithm
HUA Human urbanization algorithm
IAS Interactive autodidactic school
PO Political optimizer
SROA Search and rescue optimization algorithm
GO Group optimization
LFD Lévy flight distribution
CHA Color harmony algorithm
OHDO Opposition-based high dimensional optimization
OAOP Optimization algorithm based on OCM and PCM
ROA Rain optimization algorithm
CSO Cat swarm optimization
CSA Crow search algorithm
SE Social effect
MU Maximum unsuccessful search number
WSNs Wireless sensor networks
33
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