
Academic Editor: Iliya Bouyukliev

Received: 9 June 2025

Revised: 23 July 2025

Accepted: 24 July 2025

Published: 1 August 2025

Citation: Crawford, B.;

Cisternas-Caneo, F.; Soto, R.; Mac-lean,

C.P.T.; Lara Arce, J.; Solís-Piñones, F.;

Astorga, G.; Giachetti, G. Binary

Secretary Bird Optimization

Algorithm for the Set Covering

Problem. Mathematics 2025, 13, 2482.

https://doi.org/10.3390/

math13152482

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Binary Secretary Bird Optimization Algorithm for the Set
Covering Problem
Broderick Crawford 1,* , Felipe Cisternas-Caneo 1 , Ricardo Soto 1 , Claudio Patricio Toledo Mac-lean 1 ,
José Lara Arce 1 , Fabián Solís-Piñones 1 , Gino Astorga 2 and Giovanni Giachetti 3

1 Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241,
Valparaíso 2362807, Chile; felipe.cisternas.c@mail.pucv.cl (F.C.-C.); ricardo.soto@pucv.cl (R.S.);
claudio.toledo.m@mail.pucv.cl (C.P.T.M.-l.); jose.lara.a01@mail.pucv.cl (J.L.A.);
fabian.solis.p@mail.pucv.cl (F.S.-P.)

2 Escuela de Negocios Internacionales, Universidad de Valparaíso, Alcalde Prieto Nieto 452,
Viña del Mar 2572048, Chile; gino.astorga@uv.cl

3 Facultad de Ingeniería, Universidad Andres Bello, Antonio Varas 880, Providencia, Santiago 7591538, Chile;
giovanni.giachetti@unab.cl

* Correspondence: broderick.crawford@pucv.cl

Abstract

The Set Coverage Problem (SCP) is an important combinatorial optimization problem
known to be NP-complete. The use of metaheuristics to solve the SCP includes different
algorithms. In particular, binarization techniques have been explored to adapt metaheuris-
tics designed for continuous optimization problems to the binary domain of the SCP. In this
work, we present a new approach to solve the SCP based on the Secretary Bird Optimization
Algorithm (SBOA). This algorithm is inspired by the natural behavior of the secretary bird,
known for its ability to hunt prey and evade predators in its environment. Since the SBOA
was originally designed for optimization problems in continuous space and the SCP is a
binary problem, this paper proposes the implementation of several binarization techniques
to adapt the algorithm to the discrete domain. These techniques include eight transfer
functions and five different discretization methods. Taken together, these combinations
create multiple SBOA adaptations that effectively balance exploration and exploitation,
promoting an adequate distribution in the search space. Experimental results applied
to the SCP together with its variant Unicost SCP and compared to Grey Wolf Optimizer
and Particle Swarm Optimization suggest that the binary version of SBOA is a robust
algorithm capable of producing high quality solutions with low computational cost. Given
the promising results obtained, it is proposed as future work to focus on complex and
large-scale problems as well as to optimize their performance in terms of time and accuracy.

Keywords: combinatorial optimization; metaheuristic; bio-inspired algorithm; secretary
bird optimization algorithm; binarization; set covering problem

MSC: 68T20; 68W25; 90C27; 90C59; 68Q25

1. Introduction
The use of optimization and, in particular, metaheuristics, is gaining more and more

attention in modern industry as it allows to tackle problems that, until some time ago, were
not possible to address. Today, it is possible to tackle complex and large-scale problems,
with metaheuristics allowing us to obtain good quality solutions in a reasonable processing

Mathematics 2025, 13, 2482 https://doi.org/10.3390/math13152482

https://doi.org/10.3390/math13152482
https://doi.org/10.3390/math13152482
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5500-0188
https://orcid.org/0000-0001-7723-7012
https://orcid.org/0000-0002-5755-6929
https://orcid.org/0009-0002-0679-1918
https://orcid.org/0009-0005-9082-9465
https://orcid.org/0009-0008-8140-2250
https://orcid.org/0000-0002-9913-0467
https://orcid.org/0000-0003-2809-5120
https://doi.org/10.3390/math13152482
https://www.mdpi.com/article/10.3390/math13152482?type=check_update&version=1

Mathematics 2025, 13, 2482 2 of 28

time [1]. Metaheuristics, in general, allow us to address different types of problems and can
also adapt to changes in the environment, being able to work in different domains. All these
characteristics make them attractive for solving current real-world problems in a variety of
areas, such as logistics [2,3], manufacturing industry [4,5], transport [6,7], health [8,9], and
mining [10,11], among others.

The Set Covering Problem (SCP) is a combinatorial optimization problem known
to be NP-hard that is ever-present in various industries [12] and one of the 21 problems
present in Karp [13]. It involves finding a subset of columns from a binary matrix A of
size m × n that covers all rows at the lowest possible cost. This problem has significant
applications in various fields, such as emergency service location [14], crew scheduling in
mass transportation systems [15], and other related problems discussed in [16]. There is a
special case of SCP where all sets have the same cost in this case the task is to minimize
the selection of sets to cover the given universe. Practical applications in the industry are
engineering design [17] and vehicle path planning [18], among others.

The use of metaheuristics to solve the SCP includes algorithms such as Genetic
Algorithms [19], Particle Swarm Optimization [20], Ant Colony Optimization [21],
Tabu Search [22], Electromagnetism metaheuristic [23], Artificial Bee Colony [24], and
GRASP [25], among others. In particular, binarization techniques have been explored to
adapt metaheuristics designed for continuous optimization problems to the binary domain
of the SCP.

In this work, we present a new approach to solving the SCP based on the Secretary Bird
Optimization Algorithm (SBOA) [26]. The SBOA was selected for this research for several
compelling reasons, drawn directly from its original design and validated performance.
First, it is a recent metaheuristic whose authors specifically engineered it to address common
shortcomings of existing algorithms, aiming to improve convergence speed, enhance
optimization accuracy, and effectively avoid local optima. These characteristics are highly
desirable for tackling NP-hard problems like the SCP. Second, the SBOA achieves a robust
balance between its exploration and exploitation phases by uniquely combining three
different search strategies: differential evolution, Brownian motion, and Lévy flights.
Finally, its effectiveness is not merely theoretical; the SBOA has demonstrated superior
performance against numerous advanced algorithms on standard benchmark suites (CEC-
2017 and CEC-2022) and has been successfully applied to solve twelve different constrained
engineering problems.

Given these strengths, the SBOA emerges as a strong and novel candidate for adap-
tation to the binary domain to solve the SCP. The relevance of finding new and efficient
solutions for this problem is underscored by its wide range of applications, which have be-
come even more critical in modern industry. For example, in the post-pandemic era, supply
chains and logistics face continuous challenges where the SCP is present [27], including the
efficient allocation of resources and crews [28,29], balancing assembly lines, and optimizing
the location of distribution centers to meet growing demand.

Since the SBOA was originally designed for optimization problems in continuous
spaces and the SCP is a binary problem, this work proposes the implementation of several
binarization techniques to adapt the algorithm to the discrete domain. These techniques
include eight transfer functions with “S”-shaped and “V”-shaped variants and five differ-
ent discretization methods. Together, these combinations create multiple adaptations of
the SBOA that effectively balance exploration and exploitation, promoting an adequate
distribution in the search space. The results suggest that the binary version of the SBOA
(BSBOA) is a robust algorithm capable of producing high-quality solutions with low com-
putational cost.

Mathematics 2025, 13, 2482 3 of 28

This article is organized as follows: We present a brief description of the Set Coverage
Problem in Section 2, how to resolve SCP with continuos metaheuristics in Section 3, and
an outline of the Secretary Bird Optimitation Algorithm in Section 4. We explain how
and make the binary version of the SBOA in Section 5. Finally, we present our results,
discussions, conclusions, and possible future lines of research in Sections 6–8.

2. Set Covering Problem
The Set Covering Problem (SCP) is a combinatorial optimization problem categorized

as NP-hard. Its main objective is to find a minimal subset of elements that completely
covers a universal set of requirements while minimizing the associated cost.

2.1. Formal Mathematical Formulation

Formally, let U = {u1, u2, . . . , um} be a universal set composed of m elements, and let
S = {S1, S2, . . . , Sn} be a collection of n subsets, where each subset Sj has an associated cost
cj. The problem consists of identifying an optimal subset S∗ ⊆ S that covers all elements in
U at the minimum possible cost.

To model this problem and solve it computationally, the formal set-based definition
is translated into a matrix formulation. A binary matrix represents the problem A with
m rows and n columns. Each of the m rows corresponds to an element ui of the universal
set U and each of the n columns represents an available subset Sj. The value in the matrix,
ai,j, is 1 if subset j covers element i (that is, ui ∈ Sj), and 0 otherwise.

A =


a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
am,1 am,2 . . . am,n


To decide which columns (subsets) are chosen, the binary decision variable xj is used,

which takes the value of one if column j is selected for the solution, and zero if it is not.
Thus, the main objective is to minimize the total cost of the solution, summing the

costs of only the selected columns, as indicated by Equation (1).

min
n

∑
j=1

cjxj (1)

The main constraint of this problem is the coverage constraint, which ensures that
each element (row) is covered by at least one selected column. This is achieved with the
following equation, which must hold for every row i:

n

∑
j=1

ai,jxj ≥ 1 (2)

In addition, we must ensure that the decision variable is binary; therefore, xj ∈ {0, 1}.

2.2. SCP Practical Example

Let us assume a company needs to form an oversight committee for a new technology
project. For the project to be successful, the committee must cover five areas of expertise:
financial, legal, technical, marketing, and logistics. The company has identified six external
consultants, each with a different set of skills and an associated cost (fee).

The goal is to apply the Set Covering Problem (SCP) to select the committee with the
lowest total cost that guarantees coverage of all required areas of expertise.

Mathematics 2025, 13, 2482 4 of 28

2.2.1. Problem Definition

1. Elements to be Covered: The five required areas of expertise.

• R1: Financial Expertise.
• R2: Legal Expertise.
• R3: Technical Expertise.
• R4: Marketing Expertise.
• R5: Logistics Expertise.

2. Available Sets: The six candidates, each with their cost and skills.

• C1: Anne (Cost: $4)—Skills: Financial, Legal.
• C2: Ben (Cost: $3)—Skills: Technical, Marketing.
• C3: Carla (Cost: $6)—Skills: Legal, Technical, Logistics.
• C4: David (Cost: $4)—Skills: Marketing, Logistics.
• C5: Elena (Cost: $5)—Skills: Financial, Technical.
• C6: Frank (Cost: $4)—Skills: Legal, Marketing.

Thus, Table 1 shows the relationship between both previous lists in the so-called
Incidence Matrix. This matrix reflects the coverage (columns) of each element (rows) and
allows us to validate whether the requirements (problem constraints) are met.

Table 1. Incidence Matrix (A), where aij = 1 if consultant j covers requirement i.

C1 (Anne) C2 (Ben) C3 (Carla) C4 (David) C5 (Elena) C6 (Frank)

R1 (Fin.) 1 0 0 0 1 0
R2 (Legal) 1 0 1 0 0 1
R3 (Tech.) 0 1 1 0 1 0
R4 (Mkt.) 0 1 0 1 0 1
R5 (Log.) 0 0 1 1 0 0

2.2.2. Mathematical Formulation

Let xj = 1 if consultant j is selected and 0 otherwise. The problem is formulated to
minimize the total cost, subject to the constraint that each area of expertise is covered.

• Objective Function (minimize cost):

min(Z) = 4x1 + 3x2 + 6x3 + 4x4 + 5x5 + 4x6 (3)

• Constraints (cover each expertise):

x1 + x5 ≥ 1 (Financial)

x1 + x3 + x6 ≥ 1 (Legal)

x2 + x3 + x5 ≥ 1 (Technical)

x2 + x4 + x6 ≥ 1 (Marketing)

x3 + x4 ≥ 1 (Logistics)

• Decision Variables:
xj ∈ {0, 1} ∀j ∈ {1, . . . , 6} (4)

2.2.3. Optimal Solution

The optimal solution for this problem is to select Anne (C1), Ben (C2), and David (C4).

• Selected Consultants: {Anne, Ben, David}
• Coverage:

– Anne covers the Financial and Legal areas.

Mathematics 2025, 13, 2482 5 of 28

– Ben covers the Technical and Marketing areas.
– David covers the Marketing and Logistics areas.

• Minimum Total Cost: $4 (Anne) + $3 (Ben) + $4 (David) = $11.

This combination fulfills all expertise requirements at the lowest possible cost.

2.3. Unicost Set Covering Problem (Unicost SCP)

The unicost problem is a specific variant of the Set Covering Problem (SCP), in which
all column costs are equal (cj = 1 for all j ∈ J). The primary objective in this case is to
minimize the number of selected columns while ensuring that each row is covered by at
least one of them. This variant simplifies the general SCP model by focusing exclusively
on the minimum number of columns required to cover all rows, emphasizing structural
optimization without considering cost variations.

Mathematically, the model can be formulated as follows:

Minimize ∑
j∈J

xj (5)

subject to

∑
j∈J

aijxj ≥ 1 for all i ∈ I, (6)

j∈ {0, 1} for all j ∈ J, (7)

where aij is a coefficient indicating whether column j covers row i, xj is a binary variable
that takes the value 1 if column j is selected and 0 otherwise, I is the set of rows, and J is
the set of columns.

The unicost problem, like the general SCP, is known to be NP-hard and has been
applied in various fields, such as scheduling, logistics, and resource optimization.

3. Continuous Metaheuristics Solving Set Covering Problem
To apply the Secretary Bird Optimization Algorithm (SBOA) to the Set Covering Prob-

lem (SCP), it is necessary to adapt the original search approach, designed for a continuous
space, to a binary environment. As discussed in Section 1, various metaheuristics have
been successfully applied to solve the SCP, including Genetic Algorithms [30], Ant Colony
Optimization [31], Particle Swarm Optimization [32], and others. All these metaheuristics
have one characteristic in common: they are metaheuristics designed to solve continuous
optimization problems that were modified to resolve binary problems like the SCP.

This adaptation is achieved through a Two-Step Technique that converts continuous
solutions into binary solutions, ensuring compliance with the SCP requirements. This
technique is fundamental for applying bioinspired algorithms to binary combinatorial
optimization problems, such as the SCP.

Two-Step Technique

In the literature, there are different ways to binarize continuous metaheuristics [33],
but the most widely used is the Two-Step Technique [34]. As its name suggests, the bina-
rization process is performed in two stages:

• Application of a transfer function, which transforms the continuous value into a value
within the range [0, 1].

• Application of a binarization rule, which determines the assignment of a 1 or a 0.

In the literature [33], a variety of transfer functions are proposed for this purpose.
They are generally categorized into two main families based on their shape and behavior:

Mathematics 2025, 13, 2482 6 of 28

S-shaped and V-shaped functions. These two families represent the most common and
well-established approaches for mapping continuous search spaces to binary ones.

• S-Shaped Functions: These sigmoidal functions produce a value in the range [0, 1] that
represents the probability of a solution’s component becoming ‘1’. An input value
close to zero yields a probability near 0.5, while large positive or negative values
push the probability towards 1 or 0, respectively. This behavior models a form of
probabilistic switch.

• V-Shaped Functions: In contrast, these functions relate the probability of change to the
magnitude of the continuous value, rather than its sign. A small step (a value close
to zero) results in a low probability of changing the bit, while a large step increases
this probability. This is conceptually linked to the notion of velocity or momentum in
swarm algorithms, where a larger “move” is more likely to alter the solution’s state.

Table 2 and Figure 1 present the standard functions from both families that are com-
monly used in this research area. The notation di

j observed in the table corresponds to the
continuous value of the j-th dimension of the i-th individual, resulting from the perturba-
tion performed by the continuous metaheuristic.

Table 2. S-shaped and V-shaped transfer functions.

S-Shaped V-Shaped

Name Equation Name Equation

S1 T(di
j) =

1

1+e
−2di

j
V1 T(di

j) =
∣∣∣erf
(√

π
2 di

j

)∣∣∣
S2 T(di

j) =
1

1+e
−di

j
V2 T(di

j) =
∣∣∣tanh(di

j)
∣∣∣

S3 T(di
j) =

1

1+e
−di

j/2
V3 T(di

j) =

∣∣∣∣∣ di
j√

1+(di
j)

2

∣∣∣∣∣
S4 T(di

j) =
1

1+e
−di

j/3
V4 T(di

j) =
∣∣∣ 2

π arctan
(

π
2 di

j

)∣∣∣
Additionally, in the literature [33], we can find five different binarization rules, of

which we can highlight the following:

• Standard (STD): If the condition is satisfied, the standard binarization rule returns 1;
otherwise, it returns 0. Mathematically, it is defined as follows:

X j
new =

1 if rand ≤ T(dj
i),

0 else.
(8)

• Elitist (ELIT): The best value is assigned if a random value is within the probability;
otherwise, a zero value is assigned. Mathematically, it is defined as follows:

X j
new =

X j
Best if rand < T(dj

i),

0 else.
(9)

• Complement (COM): If the condition is satisfied, the second step operator returns the
complement of the actual value.xj

new = complement
(

xj
w

)
if rand ≤ T

(
dj

w

)
,

0 else.
(10)

Mathematics 2025, 13, 2482 7 of 28

(a) S-shaped. (b) V-shaped.

Figure 1. S-shaped and V-shaped transfer functions.

4. Secretary Bird Optimization Algorithm
The Secretary Bird Optimization Algorithm (SBOA) is a metaheuristic inspired by the

natural behavior of the secretary bird, particularly its unique strategies for hunting and
evading predators. It was proposed in 2024 by Youfa Fu, Dan Liu, Jiadui Chen, and Ling
He [26]. The algorithm was originally designed to solve continuous optimization problems,
leveraging its exploration and exploitation phases to efficiently find optimal solutions.

The operation of the SBOA is divided into two main phases that mimic the bird’s
survival instincts: exploration, which models its hunting strategy, and exploitation, which
models its escape strategy.

4.1. Exploration Phase (Hunting Strategy)

This phase simulates how the secretary bird hunts its prey, like snakes, and corre-
sponds to a global search in the solution space. The process is modeled in three stages that
reflect the bird’s hunting tactics:

• Searching for Prey: The bird begins by exploring the terrain to locate hidden prey.
The algorithm mimics this by creating a new solution based on the difference between
two randomly selected solutions from the population. This enhances diversity and
allows the algorithm to scan new, unexplored areas of the search space. This movement
is modeled by Equation (11).

xnew, P1
ij = xij + (xrandom1 − xrandom2) · R1, (11)

• Wearing Down the Prey: Once prey is found, the bird does not attack immediately but
circles and provokes it to deplete its energy. The algorithm models this by moving
towards the best solution found so far (xbest), simulating how the bird focuses on its
target, while introducing a random component to avoid premature convergence. This
is shown in Equation (12).

xnew, P1
ij = xbest + exp

((
t
T

)4
)
· (RB − 0.5) · (xbest − xij), (12)

• Attacking the Prey: When the prey is exhausted, the bird executes a swift, lethal
attack. To simulate this decisive action, the algorithm performs a “jump” toward the
best solution using a Lévy flight (RL). This feature models the bird’s powerful strike,

Mathematics 2025, 13, 2482 8 of 28

combining frequent small steps with occasional long jumps to accelerate convergence
towards the global optimum. The movement is described in Equation (13).

xnew, P1
ij = xbest +

(
1 − t

T

)(2× t
T)

· xij · RL, (13)

4.2. Exploitation Phase (Escape Strategy)

This phase models how the secretary bird evades predators, which corresponds to
a refined local search for a better solution. The bird chooses one of two strategies with
equal probability:

• Camouflage (C1): The bird may hide in its environment to avoid being detected. The al-
gorithm simulates this by making small, subtle adjustments to its current position,
moving locally around the best-known solution to refine it.

• Fleeing (C2): If camouflage is not an option, the bird runs or flies to escape danger.
The algorithm models this with a larger, more random movement that allows it to
jump to other regions of the search space, effectively avoiding stagnation.

Both escape strategies are modeled using Equation (14).

xnew, evasion
ij =

C1 : xbest + (2 · RB − 1) ·
(
1 − t

T
)2 · xij, if r < 0.5,

C2 : xij + R2 · (xrandom − K · xij), else.
(14)

4.3. Solution Selection

A key aspect of the SBOA is how it determines if a new solution is superior to the
current one. The algorithm employs a greedy selection mechanism for this purpose.

The quality of each solution is measured by an objective function (F), which, in the
context of the Set Covering Problem, is the total cost to be minimized. After generating
a new candidate position in either the exploration or exploitation phase, the algorithm
compares the fitness of the new solution (Fnew, P1

i) with that of the current one (Fi).
The new solution is accepted only if it offers a better fitness value (i.e., a lower cost).

Otherwise, the current solution is kept. This process, shown in Equation (15), ensures that
the population’s quality either improves or remains the same in each iteration, guiding the
search effectively towards the optimal solution.

Xi =

Xnew, P1
i if Fnew, P1

i < Fi

Xi else
(15)

The pseudo-code of the SBOA is detailed in the pseudo-code of Algorithm 1.

Mathematics 2025, 13, 2482 9 of 28

Algorithm 1 Secretary Bird Optimization Algorithm.
Input: Problem Setting (Dim, ub, lb, Pop_size(N)), Max_Iter(T), Curr_Iter(t)
Output: Best solution

1: Initialize the population randomly.
2: for t = 1 → T do
3: Update Secretary Bird xbest.
4: for i = 1 → N do
5: Exploration Phase:
6: if t ≤ 1

3 T then
7: Calculate new status using Searching Stage Equation (11).
8: Update the i-th Secretary Bird using Update Equation (15).
9: else if 1

3 T < t < 2
3 T then

10: Calculate new status using Consuming Stage Equation (12).
11: Update the i-th Secretary Bird using Update Equation (15).
12: else if 1

3 T < t < 2
3 T then

13: Calculate new status using Attacking Stage Equation (13).
14: Update the i-th Secretary Bird using Update Equation (15).
15: end if
16: Exploitation Phase:
17: if r < 0.5 then
18: Calculate new status using C1 in Exploitation Phase Equation (14).
19: else
20: Calculate new status using C2 in Exploitation Phase Equation (14).
21: end if
22: Update the i-th Secretary Bird using Update Equation (15).
23: end for
24: Output the best solution obtained by SBOA for the given optimization problem.
25: Save the best candidate solution so far.
26: end for
27: Output the best solution obtained by SBOA for the given optimization problem.

5. Binary Secretary Bird Optimization Algorithm
As explained in Section 4, the Algorithm Optimization based on the Behavior of

the Secretary Bird (SBOA) is a metaheuristic designed to solve continuous optimization
problems. To address problems such as feature selection, it is necessary to transform the
solutions into the binary domain.

Furthermore, in Section 3, it was highlighted that the Two-Step Technique is one of the
most widely used approaches for binarizing continuous metaheuristics. In [33,34], eight
different transfer functions and five binarization rules are described, which can be applied
in this context.

In this work, the binarization scheme was chosen based on established findings in the
literature that analyze the relationship between different transfer functions, binarization
rules, and the exploration–exploitation balance. For the experiments, we use the V3
transfer function and the Elitist discretization method, considering the work carried out
by Lanza-Gutierrez et al. in [35], where they recommend the use of V3 to solve small and
medium-sized problems and for a better exploration–exploitation relation recommend
Elitist as a discretization technique.

Additionally, we selected a function from the V-shaped family because its behavior
is particularly well-suited for swarm intelligence algorithms. Unlike S-shaped functions,
V-shaped functions relate the probability of a bit changing to the magnitude (or “velocity”)
of the agent’s move, not its direction. A larger step size corresponds to a higher probability
of flipping a bit. Among these, the V3 transfer function, shown in Equation (16), was

Mathematics 2025, 13, 2482 10 of 28

chosen due to recommendations in the literature for its robust performance on small and
medium-sized problems.

T(di
j) =

∣∣∣∣∣∣
di

j√
1 + (di

j)
2

∣∣∣∣∣∣ (16)

To complement the transfer function, the elitist binarization rule was selected,
as shown in Equation (17). This rule introduces a strong exploitation pressure by giv-
ing a chance to preserve bits from the best-found solution in the population (XBest). This
element of elitism is intended to balance the highly explorative nature of the SBOA’s
hunting phases, thereby creating a more focused and effective search process.

Xk
new =

Xk
Best if rand < T(dk

i),

0 else.
(17)

In this way, the Binary Secretary Bird Optimization Algorithm (BSBOA) is constructed.
The process begins with the initialization of the solutions in the binary domain. In each
iteration, the binary solutions are modified using Equations (11)–(14), which represent the
movement equations specific to the SBOA. Once the solutions are perturbed, they exit the
binary domain, and a binarization process is applied using Equations (16) and (17). This
cycle is repeated until the defined number of iterations is completed.

Algorithm 2 presents the binary version of the SBOA, where the key section is the
binarization that occurs in line 23.

Algorithm 2 Binary Secretary Bird Optimization Algorithm.
Input: Problem Setting (Dim, ub, lb, Pop_size(N)), Max_Iter(T), Curr_Iter(t)
Output: Best solution

1: Initialize the population randomly.
2: for t = 1 → T do
3: Update Secretary Bird xbest.
4: for i = 1 → N do
5: Exploration Phase:
6: if t ≤ 1

3 T then
7: Calculate new status using Searching Stage Equation (11).
8: Update the i-th Secretary Bird using Update Equation (15).
9: else if 1

3 T < t < 2
3 T then

10: Calculate new status using Consuming Stage Equation (12).
11: Update the i-th Secretary Bird using Update Equation (15).
12: else if 1

3 T < t < 2
3 T then

13: Calculate new status using Attacking Stage Equation (13).
14: Update the i-th Secretary Bird using Update Equation (15).
15: end if
16: Exploitation Phase:
17: if r < 0.5 then
18: Calculate new status using C1 in Exploitation Phase Equation (14).
19: else
20: Calculate new status using C2 in Exploitation Phase Equation (14).
21: end if
22: Update the i-th Secretary Bird using Update Equation (15).
23: Binarization of population X
24: end for
25: Save the best candidate solution so far.
26: end for
27: Output the best solution obtained by SBOA for the given optimization problem.

Mathematics 2025, 13, 2482 11 of 28

Algorithm Complexity Analysis

Each algorithm requires a certain amount of time to perform its optimization tasks,
and these can vary for the same problem. Evaluating algorithmic complexity is an effective
way to demonstrate performance in terms of runtime. Big O notation is one of the most
widely used tools for complexity analysis [36], and we will use it in this paper to analyze
the complexity of BSBOA. Let N be the population size, Dim the number of decision
variables, and T the maximum number of iterations. Thus, for the initialization process
of random solutions, we have a complexity of O(N). During the optimization process,
the complexity is O(T × N) + 2 · O(T × N × Dim), which includes the search for the best
positions per iteration (O(T × N)), the updating of the positions of all solutions per iteration
(O(T × N × Dim)), and the binarization of all solutions per iteration (O(T × N × Dim)).
Thus, the algorithmic complexity of our proposal is O(N × (T × Dim + 1)).

6. Experimental Result
To develop the validation of our proposal, we have used the instances offered in

OR-library [37] for both the pesos version (SCP) [35] and for the Unicot version (USCP) [17].
Our proposal was compared to two continuous metaheuristics of great relevance, such as
Binary Particle Swarm Optimization [38] and Binary Grey Wolf Optimizer [39].

6.1. Parameter Setting

Before performing experimentation, we perform internal tests for parameter configu-
ration. Specifically, we have carried out experimentation with the population size and the
number of iterations. For the population size, we tested from [10, 100] in increments of 10,
and the population sizes we tested were [20.50, 70, 100, 150, 200, 300, 400, 500, 600, 700, 800,
900, 1000].

Table 3 shows the subset of instances used for parameter configuration. We have used
these instances because we consider that they are representative of the entire portfolio
of existing instances of OR-library. The table contains the following details: The first
column shows the name of the instance, the second column shows the sample to the type of
problem that the instance (SCP or USCP) belongs, the third column refers to the amount of
restrictions that the instance possesses, the fourth column refers to the amount of decision
variables to optimize, the fifth column refers to the density of some that the matrix has
in view of Section 3, and the last column refers to the optimal value of the instance. This
experiment was conducted in a team using a Windows 10 operating system, an Intel Core
i9-10900 K 3.70 GHz Processor, and 64 GB of RAM.

Table 3. Instances used for parameter configuration.

Instance Type Problem M N Density (%) Optimum

41 SCP 200 1000 2.00 429
61 SCP 200 2000 5.00 138
b1 SCP 300 3000 5.00 69
d1 SCP 400 4000 5.00 60

clr10 USCP 511 210 12.30 25
clr11 USCP 1023 330 12.40 23
cyc06 USCP 240 192 2.10 60
cyc07 USCP 672 448 0.90 144

Table 4 shows the best configurations for each instance executed, considering com-
puting time and the fitness reached. Thus, it is observed that the ideal population size for
this experiment is 10. For the number of iterations, the value changes for each instance;

Mathematics 2025, 13, 2482 12 of 28

therefore, we have determined that the average iterations will be used in experimentation.
Thus, the number of iterations is 600.

Table 4. Parameter selection.

Pop Iter Instance Best Fitness Worst Fitness Average Time Seconds Time Minutes

10 500 41 433 433 433 104.18 1.74
10 70 61 141 141 141 10.32 0.17
10 400 b1 69 69 69 233.97 3.9
10 600 clr10 25 27 25.43 51.69 0.86
10 900 clr11 23 26 24.57 185.9 3.1
10 600 cyc06 60 60 60 52.07 0.87
10 500 cyc07 144 154 149.71 240.98 4.02
10 1000 d1 60 61 60.43 1297.6 21.63

Thus, Table 5 shows the final configuration of the experimentation carried out in this
work. The global configuration used by all the metaheuristics (All MH) and the parameters
of each metaheuristic are highlighted.

Table 5. Configuration of parameters.

Parameter Value

All MH

Population size 10
Iterations 600

Independent runs 31
Transfer functions V3

Method of discretization Elitist

PSO

wmin 0.1
wmax 0.9

c1 2
c2 2

GWO a linearly decreases from 2 to 0
SBOA CF potentially decreases at 0

6.2. SCP and USCP Instances Resolved

Tables 6 and 7 show the instances used to solve the SCP and USCP, respectively. Each
table shows the instance name (column Instance), the number of constraints (column M),
the number of decision variables (column N), the density of ones in the matrix mentioned
in Section 2 (column Density %), and the instance’s optimum. It should be noted that
the underlined and bold optima are not global optima but the best results reported in the
literature. Thus, for the present work, we solved 22 instances for the SCP and 17 instances
for the USCP.

Table 6. Instances used for the SCP.

Instance M N Density (%) Optimum

41 200 1000 2.00 429
42 200 1000 2.00 512
51 200 2000 2.00 253
52 200 2000 2.00 302
61 200 1000 5.00 138
62 200 1000 5.00 146
A1 300 3000 2.00 253
A2 300 3000 2.00 252

Mathematics 2025, 13, 2482 13 of 28

Table 6. Cont.

Instance M N Density (%) Optimum

B1 300 3000 5.00 69
B2 300 3000 5.00 76
C1 400 4000 2.00 227
C2 400 4000 2.00 219
D1 400 4000 5.00 60
D2 400 4000 5.00 66

NRE1 500 5000 10.00 29
NRE2 500 5000 10.00 30
NRF1 500 5000 20.00 14
NRF2 500 5000 20.00 15
NRG1 1000 10,000 2.00 176
NRG2 1000 10,000 2.00 154
NRH1 1000 10,000 5.00 63
NRH2 1000 10,000 5.00 63

Table 7. Instances used for the USCP.

Instance M N Density (%) Optimum

U41 200 1000 2.00 38
U51 200 2000 2.00 34
U61 200 1000 5.00 21
UA1 300 3000 2.00 39
UB1 300 3000 5.00 22
UC1 400 4000 2.00 43
UD1 400 4000 5.00 24

UNRE1 500 5000 10.00 17
UNRF1 500 5000 20.00 10
UNRG1 1000 10,000 2.00 61
UNRH1 1000 10,000 5.00 34
CLR10 511 210 12.30 25
CLR11 1023 330 12.40 23
CLR12 2047 495 12.50 23
CYC06 240 192 2.10 60
CYC07 672 448 0.90 144
CYC08 1792 1024 0.40 344

6.3. Results of SCP

This subsection shows the results of running the SBOA with the previously established
parameters and compared with the GWO and PSO algorithms. In Tables 8 and 9, the results
are shown when running the different instances of OR-library. For each algorithm and
instance, the best known optimal value, the best value achieved, the worst value achieved,
the average, and the standard deviation of the solutions obtained of the 30 executions are
shown in the tables [40].

Table 8. Fitness results per SCP instance.

MH Instance Opt. Best Worst Avg. Fitness Std. Fitness

SBOA
41 429

433.0 433.0 433.0 0.0
GWO 433.0 438.0 433.419 1.29
PSO 433.0 437.0 433.258 0.983

SBOA
42 512

525.0 527.0 525.968 0.999
GWO 525.0 527.0 525.935 0.982
PSO 525.0 527.0 526.29 0.957

Mathematics 2025, 13, 2482 14 of 28

Table 8. Cont.

MH Instance Opt. Best Worst Avg. Fitness Std. Fitness

SBOA
51 253

267.0 269.0 267.29 0.52
GWO 267.0 268.0 267.194 0.395
PSO 267.0 269.0 267.323 0.59

SBOA
52 302

315.0 322.0 318.387 1.979
GWO 315.0 323.0 319.677 2.74
PSO 315.0 323.0 318.742 2.17

SBOA
61 138

141.0 145.0 141.935 1.605
GWO 141.0 145.0 142.968 1.926
PSO 141.0 145.0 141.839 1.568

SBOA
62 146

148.0 154.0 149.677 2.277
GWO 148.0 154.0 150.323 2.085
PSO 148.0 154.0 149.387 2.058

SBOA
A1 253

257.0 257.0 257.0 0.0
GWO 257.0 257.0 257.0 0.0
PSO 257.0 257.0 257.0 0.0

SBOA
A2 252

258.0 265.0 260.387 1.58
GWO 256.0 265.0 260.452 1.997
PSO 258.0 265.0 261.355 1.976

SBOA
B1 69

69.0 71.0 69.387 0.79
GWO 69.0 71.0 69.645 0.9
PSO 69.0 71.0 69.387 0.79

SBOA
B2 76

76.0 77.0 76.129 0.335
GWO 76.0 82.0 76.419 1.185
PSO 76.0 77.0 76.161 0.368

SBOA
C1 227

231.0 234.0 233.065 0.504
GWO 231.0 235.0 232.806 0.858
PSO 231.0 234.0 232.968 0.647

SBOA
C2 219

221.0 226.0 222.387 1.559
GWO 221.0 228.0 222.516 1.949
PSO 221.0 229.0 222.645 2.088

SBOA
D1 60

60.0 65.0 61.387 1.006
GWO 60.0 63.0 61.161 0.919
PSO 60.0 63.0 61.323 1.028

SBOA
D2 66

67.0 69.0 67.71 0.727
GWO 67.0 69.0 67.774 0.791
PSO 67.0 69.0 67.677 0.69

SBOA
NRE1 29

29.0 29.0 29.0 0.0
GWO 29.0 30.0 29.032 0.177
PSO 29.0 29.0 29.0 0.0

SBOA
NRE2 30

30.0 32.0 31.0 0.803
GWO 30.0 33.0 31.065 0.878
PSO 30.0 32.0 30.71 0.632

SBOA
NRF1 14

14.0 14.0 14.0 0.0
GWO 14.0 15.0 14.032 0.177
PSO 14.0 14.0 14.0 0.0

SBOA
NRF2 15

15.0 15.0 15.0 0.0
GWO 15.0 16.0 15.032 0.177
PSO 15.0 15.0 15.0 0.0

A convergence graph represents how the metaheuristic finds progressively better and
better solutions as iterations increase. In order to find good solutions in a reasonable time to
provide answers to real-world problems, it is expected that the number of iterations will not

Mathematics 2025, 13, 2482 15 of 28

be excessive in order to avoid the excessive use of computational resources. As described
in Crawford et al. [41] and Lemus-Romani et al. [42], graphs were used to document the
optimization process while considering the fitness achieved as the iterations progressed.
This is shown in Figures 2–5, where the relationship between the number of iterations and
the fitness achieved is shown, corresponding to the x and y axes, respectively, where it
can be seen that there is good convergence without the algorithm being trapped in a local
optimum [43].

Table 9. Fitness results per SCP instance.

MH Instance Opt. Best Worst Avg.
Fitness

Std.
Fitness

SBOA
NRG1 176

178.0 184.0 180.968 1.492
GWO 179.0 185.0 181.484 1.72
PSO 179.0 184.0 181.0 1.666

SBOA
NRG2 154

158.0 161.0 159.355 0.598
GWO 158.0 162.0 159.677 0.929
PSO 158.0 162.0 159.516 1.043

SBOA
NRH1 63

64.0 67.0 65.0 1.016
GWO 64.0 67.0 65.581 0.943
PSO 64.0 67.0 65.484 0.875

SBOA
NRH2 63

64.0 67.0 65.065 1.014
GWO 64.0 67.0 65.161 0.954
PSO 64.0 66.0 65.194 0.895

(a) Scp 41 (b) Scp 51 (c) Scp 61

Figure 2. Convergence analysis of the instances Scp 41, Scp 51 and Scp 61.

(a) Scp a1 (b) Scp b1 (c) Scp c1

Figure 3. Convergence analysis of the instances Scp a1, Scp b1 and Scp c1.

(a) Scp d1 (b) Scp nre1 (c) Scp nrf1

Figure 4. Convergence analysis of the instances Scp d1, Scp nre1 and Scp nrf1.

Mathematics 2025, 13, 2482 16 of 28

(a) Scp nrg1 (b) SCP nrh1

Figure 5. Convergence analysis of the instances Scp nrg1 and Scp nrh1.

On the other hand, in Tables 10 and 11, the execution of the different instances for the
three Algorithms, the SBOA, GWO and PSO, are shown, considering their execution time.

Table 10. Time per SCP instance.

MH Instance Min. Time (s) Max. Time (s) Avg. Time (s) Std. Time (s)

SBOA
41

157.704 213.129 183.116 16.07
GWO 153.028 187.257 173.556 9.494
PSO 154.711 170.525 165.33 4.352

SBOA
42

142.817 218.333 174.875 19.872
GWO 158.63 182.134 171.814 6.122
PSO 158.201 167.463 164.051 2.481

SBOA
51

253.613 374.187 313.787 30.033
GWO 236.581 282.194 267.529 14.559
PSO 237.17 271.079 259.171 8.931

SBOA
52

253.449 379.583 314.932 34.542
GWO 233.655 283.615 266.88 13.466
PSO 231.334 271.309 258.577 10.615

SBOA
61

98.435 157.754 122.681 13.947
GWO 110.113 123.04 116.26 3.258
PSO 102.526 116.973 109.84 2.943

SBOA
62

97.503 142.421 119.435 13.442
GWO 107.432 121.659 114.606 3.808
PSO 104.62 115.671 110.325 3.257

SBOA
A1

776.617 992.96 886.21 52.953
GWO 548.174 603.27 583.829 19.38
PSO 547.932 583.488 564.821 7.163

SBOA
A2

760.15 978.413 885.575 58.469
GWO 559.968 613.854 589.377 14.932
PSO 540.209 587.692 569.523 11.293

SBOA
B1

492.081 598.676 549.83 29.989
GWO 340.665 377.974 355.276 7.95
PSO 331.606 369.327 355.788 7.879

SBOA
B2

509.619 609.138 566.107 27.889
GWO 345.028 399.848 368.475 9.286
PSO 339.963 369.457 350.85 6.382

SBOA
C1

1624.884 2006.59 1800.822 104.886
GWO 1055.171 1174.378 1109.42 26.687
PSO 1057.741 1215.157 1083.767 32.262

SBOA
C2

1494.119 1967.28 1785.954 136.993
GWO 1019.127 1169.176 1117.342 30.362
PSO 1034.299 1112.982 1075.741 15.09

Mathematics 2025, 13, 2482 17 of 28

Table 10. Cont.

MH Instance Min. Time (s) Max. Time (s) Avg. Time (s) Std. Time (s)

SBOA
D1

932.527 1160.315 1073.955 65.504
GWO 640.738 702.894 661.201 13.484
PSO 605.31 667.894 638.656 13.116

SBOA
D2

943.902 1147.318 1060.202 52.619
GWO 608.824 691.086 646.158 16.23
PSO 594.241 664.729 628.357 20.317

Table 11. Time per SCP instance.

MH Instance Min. Time (s) Max. Time (s) Avg. Time (s) Std. Time (s)

SBOA
NRE1

1163.322 1343.931 1301.288 43.887
GWO 709.169 820.318 756.539 27.69
PSO 681.815 749.788 714.205 14.854

SBOA
NRE2

1111.717 1419.179 1314.766 74.668
GWO 683.767 845.554 754.179 40.734
PSO 669.604 855.131 758.741 49.429

SBOA
NRF1

1032.868 1327.712 1225.842 70.654
GWO 565.83 681.723 619.619 26.624
PSO 546.366 661.886 604.704 28.136

SBOA
NRF2

1099.421 1391.446 1272.068 76.519
GWO 573.592 701.44 633.946 30.842
PSO 588.031 713.309 635.212 26.661

SBOA
NRG1

17,984.637 54,355.97 26,594.345 12,842.352
GWO 30,569.108 62,689.422 53,273.186 11,121.198
PSO 32,644.973 61,491.48 55,582.678 6414.388

SBOA
NRG2

17,185.131 52,717.745 27,342.828 9971.869
GWO 25,719.309 61,376.891 53,300.762 10,461.981
PSO 31,367.547 59,373.087 54,333.041 5643.738

SBOA
NRH1

10,512.106 32,739.219 16,587.815 6416.691
GWO 15,165.461 34,183.717 30,025.251 4855.541
PSO 21,114.651 35,256.654 31,207.508 2997.95

SBOA
NRH2

10,276.136 29,402.972 15,774.859 5539.228
GWO 14,111.582 34,673.103 29,343.299 5608.793
PSO 19,751.687 34,721.174 30,023.669 3445.378

Figures 6–9 show graphs with the performance of the three metaheuristics (SBOA,
PSO and GWO), where it can be seen that although the times of the SBOA in relation to the
iterations were not better than PSO and GWO, they were promising.

0 100 200 300 400 500 600
Iteración

0.0

0.1

0.2

0.3

0.4

0.5

Ti
em

po
 (s

)

Comparación de Mejor Tiempo
 scp41

SBOA - Time
PSO - Time
GWO - Time

(a) Scp 41

0 100 200 300 400 500 600
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ti
m

e
(s

)

Best Time Comparison
 scp51

SBOA - Time
PSO - Time
GWO - Time

(b) Scp 51

0 100 200 300 400 500 600
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
(s

)

Best Time Comparison
 scp61

SBOA - Time
PSO - Time
GWO - Time

(c) Scp 61

Figure 6. Time analysis of the instances Scp 41, Scp 51 and Scp 61.

Mathematics 2025, 13, 2482 18 of 28

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

Best Time Comparison
 scpa1

SBOA - Time
PSO - Time
GWO - Time

(a) Scp a1

0 100 200 300 400 500 600
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

)

Best Time Comparison
 scpb1

SBOA - Time
PSO - Time
GWO - Time

(b) Scp b1

0 100 200 300 400 500 600
Iteration

0

1

2

3

4

5

Ti
m

e
(s

)

Best Time Comparison
 scpc1

SBOA - Time
PSO - Time
GWO - Time

(c) Scp c1

Figure 7. Time analysis of the instances Scp a1, Scp b1 and Scp c1.

0 100 200 300 400 500 600
Iteration

0

1

2

3

4

Ti
m

e
(s

)

Best Time Comparison
 scpd1

SBOA - Time
PSO - Time
GWO - Time

(a) Scp d1

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

Best Time Comparison
 scpnre1

SBOA - Time
PSO - Time
GWO - Time

(b) Scp nre1

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

)

Best Time Comparison
 scpnrf1

SBOA - Time
PSO - Time
GWO - Time

(c) Scp nrf1

Figure 8. Time analysis of the instances Scp d1, Scp nre1 and Scp nrf1.

0 100 200 300 400 500 600
Iteration

0

25

50

75

100

125

150

175

Ti
m

e
(s

)

Best Time Comparison
 scpnrg1

SBOA - Time
PSO - Time
GWO - Time

(a) Scp nrg1

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

Best Time Comparison
 scpnre1

SBOA - Time
PSO - Time
GWO - Time

(b) Scp nre1

0 100 200 300 400 500 600
Iteration

0

20

40

60

80

100

Ti
m

e
(s

)

Best Time Comparison
 scpnrh1

SBOA - Time
PSO - Time
GWO - Time

(c) Scp nrh1

Figure 9. Time analysis of the instances Scp nrg1, Scp nre1 and Scp nrh1.

6.4. Results of USCP

Table 12 shows the results obtained when running the different instances of the USCP
for the three metaheuristics investigated in this work (SBOA, GWO and PSO).

Table 12. Fitness results per USCP instance.

MH Instance Opt. Best Worst Avg. Fitness Std. Fitness

SBOA
U41 38

39.0 41.0 39.839 0.627
GWO 39.0 43.0 40.871 1.07
PSO 39.0 41.0 39.645 0.598

SBOA
U51 34

35.0 37.0 35.581 0.555
GWO 35.0 38.0 36.29 0.681
PSO 35.0 36.0 35.613 0.487

SBOA
U61 21

21.0 22.0 21.29 0.454
GWO 21.0 23.0 21.839 0.514
PSO 21.0 22.0 21.29 0.454

SBOA
UA1 39

39.0 41.0 40.323 0.642
GWO 40.0 43.0 41.387 0.656
PSO 40.0 41.0 40.452 0.498

SBOA
UB1 22

22.0 24.0 22.806 0.591
GWO 22.0 24.0 23.387 0.605
PSO 22.0 23.0 22.774 0.418

SBOA
UC1 43

43.0 45.0 44.323 0.532
GWO 44.0 48.0 46.387 0.79
PSO 44.0 46.0 44.774 0.551

Mathematics 2025, 13, 2482 19 of 28

Table 12. Cont.

MH Instance Opt. Best Worst Avg. Fitness Std. Fitness

SBOA
UD1 24

25.0 26.0 25.226 0.418
GWO 25.0 27.0 26.194 0.47
PSO 25.0 26.0 25.065 0.246

SBOA
UNRE1 17

17.0 18.0 17.516 0.5
GWO 17.0 18.0 17.774 0.418
PSO 17.0 17.0 17.0 0.0

SBOA
UNRF1 10

10.0 11.0 10.903 0.296
GWO 10.0 11.0 10.774 0.418
PSO 10.0 11.0 10.29 0.454

SBOA
UNRG1 61

62.0 63.0 62.484 0.5
GWO 63.0 68.0 66.194 0.895
PSO 62.0 64.0 63.29 0.579

SBOA
UNRH1 34

34.0 35.0 34.323 0.467
GWO 35.0 37.0 35.839 0.514
PSO 34.0 35.0 34.935 0.246

SBOA
CLR10 24

25.0 27.0 25.097 0.39
GWO 25.0 27.0 25.387 0.748
PSO 25.0 27.0 25.29 0.632

SBOA
CLR11 23

23.0 23.0 23.0 0.0
GWO 23.0 27.0 24.839 1.919
PSO 23.0 27.0 23.387 1.183

SBOA
CLR12 23

23.0 28.0 24.258 1.586
GWO 23.0 29.0 24.774 2.121
PSO 23.0 26.0 23.968 1.257

SBOA
CYC06 60

60.0 62.0 61.097 0.817
GWO 60.0 63.0 61.452 0.978
PSO 60.0 62.0 61.226 0.831

SBOA
CYC07 144

147.0 153.0 150.871 1.362
GWO 147.0 154.0 151.903 1.399
PSO 144.0 153.0 150.484 1.563

SBOA
CYC08 344

357.0 365.0 361.129 2.324
GWO 358.0 372.0 363.419 2.721
PSO 358.0 367.0 362.258 1.883

Figures 10–15 show the convergence plots of the unicost instances, where it can be
observed that, in general, the SBOA achieves good performance with few iterations without
being trapped in a local optimum.

0 100 200 300 400 500 600
Iteration

100

200

300

400

500

Fit
ne

ss

Best Fitness Comparison
 uscpu41

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(a) UScp 41

0 100 200 300 400 500 600
Iteration

0

200

400

600

800

1000

Fit
ne

ss

Best Fitness Comparison
 uscpu51

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(b) UScp 51

0 100 200 300 400 500 600
Iteration

0

100

200

300

400

500

Fit
ne

ss

Best Fitness Comparison
 uscpu61

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(c) UScp 61

Figure 10. Convergence analysis of the instances UScp 41, UScp 51 and UScp 61.

Mathematics 2025, 13, 2482 20 of 28

0 100 200 300 400 500 600
Iteration

0

200

400

600

800

1000

1200

1400

Fit
ne

ss

Best Fitness Comparison
 uscpua1

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(a) UScp a1

0 100 200 300 400 500 600
Iteration

0

200

400

600

800

1000

1200

1400

Fit
ne

ss

Best Fitness Comparison
 uscpub1

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(b) UScp b1

0 100 200 300 400 500 600
Iteration

0

250

500

750

1000

1250

1500

1750

2000

Fit
ne

ss

Best Fitness Comparison
 uscpuc1

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(c) UScp c1

Figure 11. Convergence analysis of the instances UScp a1, UScp b1 and UScp c1.

0 100 200 300 400 500 600
Iteration

0

250

500

750

1000

1250

1500

1750

2000

Fit
ne

ss

Best Fitness Comparison
 uscpud1

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(a) UScp d1

0 100 200 300 400 500 600
Iteration

0

500

1000

1500

2000

2500

Fit
ne

ss

Best Fitness Comparison
 uscpunre1

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(b) UScp unre1

0 100 200 300 400 500 600
Iteration

0

1000

2000

3000

4000

5000

Fit
ne

ss

Best Fitness Comparison
 uscpunrg1

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(c) UScp unrg1

Figure 12. Convergence analysis of the instances UScp d1, UScp unre1 and UScp unrg1.

0 100 200 300 400 500 600
Iteración

0

1000

2000

3000

4000

5000

Fit
ne

ss

Comparación de Mejor Fitness
 uscpunrh1

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(a) UScp unrh1

0 100 200 300 400 500 600
Iteration

30

40

50

60

70

80

90

100

Fit
ne

ss

Best Fitness Comparison
 uscpuclr10

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(b) UScp clr10

0 100 200 300 400 500 600
Iteration

20

40

60

80

100

120

140

160

Fit
ne

ss

Best Fitness Comparison
 uscpuclr11

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(c) UScp clr11

Figure 13. Convergence analysis of the instances UScp unrh1, UScp clr10 and UScp clr11.

0 100 200 300 400 500 600
Iteration

50

100

150

200

250

Fit
ne

ss

Best Fitness Comparison
 uscpuclr12

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(a) UScp clr12

0 100 200 300 400 500 600
Iteration

60

65

70

75

80

85

90

95

Fit
ne

ss

Best Fitness Comparison
 uscpucyc06

SBOA - Fitness
PSO - Fitness
GWO - Fitness

(b) UScp cyc06

0 100 200 300 400 500 600
Iteration

160

180

200

220

240

Fit
ne

ss
Best Fitness Comparison

 uscpucyc07
SBOA - Fitness
PSO - Fitness
GWO - Fitness

(c) UScp cyc07

Figure 14. Convergence analysis of the instances UScp clr12, UScp cyc06 and UScp cyc07.

0 100 200 300 400 500 600
Iteration

375

400

425

450

475

500

525

550

Fit
ne

ss

Best Fitness Comparison
 uscpucyc08

SBOA - Fitness
PSO - Fitness
GWO - Fitness

UScp cyc08

Figure 15. Convergence analysis of the instance UScp cyc08.

Tables 13 and 14 show the times used for the different USCP instances for the three
algorithms studied.

Mathematics 2025, 13, 2482 21 of 28

Table 13. Time per USCP instance.

MH Instance Min. Time (s) Max. Time (s) Avg. Time (s) Std. Time (s)

SBOA
U41

127.133 165.55 144.041 9.186
GWO 122.253 138.701 128.183 3.852
PSO 117.762 144.135 128.764 5.967

SBOA
U51

240.841 298.561 261.01 14.843
GWO 212.336 229.391 219.389 4.053
PSO 219.169 248.563 233.324 8.576

SBOA
U61

87.424 119.14 98.912 7.76
GWO 68.666 86.004 77.182 4.104
PSO 62.444 78.625 73.111 3.677

SBOA
UA1

596.009 988.713 718.132 81.884
GWO 271.85 342.57 299.673 21.205
PSO 155.901 331.492 281.74 35.986

SBOA
UB1

261.626 572.229 354.131 96.36
GWO 163.543 178.737 169.919 3.133
PSO 163.947 189.483 177.069 6.403

SBOA
UC1

43.0 45.0 44.323 0.532
GWO 44.0 48.0 46.387 0.79
PSO 44.0 46.0 44.774 0.551

SBOA
UD1

466.161 1065.89 691.041 212.326
GWO 280.281 314.57 292.719 6.333
PSO 280.569 329.153 302.325 12.853

SBOA
UNRE1

863.663 1732.248 1337.399 330.758
GWO 410.564 705.947 434.391 50.715
PSO 423.553 497.961 460.517 18.005

SBOA
UNRF1

1070.355 1650.344 1551.32 130.705
GWO 424.606 683.387 589.47 95.124
PSO 449.775 535.65 485.254 25.765

SBOA
UNRG1

5414.287 14,309.31 7441.461 3000.263
GWO 8737.818 18,034.46 15,638.192 3071.343
PSO 13,479.719 21,729.841 18,346.111 2374.816

SBOA
UNRH1

4168.711 16,435.724 7474.938 3805.651
GWO 4775.536 11,231.733 9150.029 1921.657
PSO 6517.542 14,954.869 11,776.28 1780.385

Table 14. Time per USCP instance.

Metaheuristic Instance Min. Time (s) Max. Time (s) Avg. Time (s) Std. Time (s)

SBOA
CLR10

58.212 86.825 75.066 6.622
GWO 23.831 29.506 26.374 1.434
PSO 29.711 36.123 32.689 1.824

SBOA
CLR11

126.482 196.981 141.176 11.534
GWO 53.558 69.384 61.066 4.716
PSO 66.438 85.256 71.301 4.728

SBOA
CLR12

604.751 1064.573 801.739 149.713
GWO 338.341 500.013 407.826 43.52
PSO 501.697 604.357 550.129 22.986

SBOA
CYC06

53.307 93.846 68.63 8.254
GWO 22.638 26.964 24.317 1.085
PSO 23.312 28.313 25.79 1.229

SBOA
CYC07

282.102 319.146 306.65 6.968
GWO 138.408 163.015 148.045 6.521
PSO 146.28 175.9 158.426 5.986

Mathematics 2025, 13, 2482 22 of 28

Table 14. Cont.

Metaheuristic Instance Min. Time (s) Max. Time (s) Avg. Time (s) Std. Time (s)

SBOA
CYC08

5163.509 4655.015 226.937
GWO 3080.423 3591.295 3391.635 126.319
PSO 3562.642 3902.347 3747.505 84.342

Figures 16–21 show graphs with the performance of the three metaheuristics (SBOA,
PSO and GWO), enabling us to compare it with the times achieved by the SBOA.

0 100 200 300 400 500 600
Iteration

0.0

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

Best Time Comparison
 uscpu41

SBOA - Time
PSO - Time
GWO - Time

(a) UScp 41

0 100 200 300 400 500 600
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
(s

)

Best Time Comparison
 uscpu51

SBOA - Time
PSO - Time
GWO - Time

(b) UScp 51

0 100 200 300 400 500 600
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e
(s

)

Best Time Comparison
 uscpu61

SBOA - Time
PSO - Time
GWO - Time

(c) UScp 61

Figure 16. Time analysis of the instances UScp 41, UScp 51 and UScp 61.

0 100 200 300 400 500 600
Iteration

20

15

10

5

0

Ti
m

e
(s

)

Best Time Comparison
 uscpua1

SBOA - Time
PSO - Time
GWO - Time

(a) UScp a1

0 100 200 300 400 500 600
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(s

)

Best Time Comparison
 uscpub1

SBOA - Time
PSO - Time
GWO - Time

(b) UScp b1

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

)

Best Time Comparison
 uscpuc1

SBOA - Time
PSO - Time
GWO - Time

(c) UScp c1

Figure 17. Time analysis of the instances UScp a1, UScp b1 and UScp c1.

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

Best Time Comparison
 scpnre1

SBOA - Time
PSO - Time
GWO - Time

(a) UScp nre1

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

)

Best Time Comparison
 scpnrf1

SBOA - Time
PSO - Time
GWO - Time

(b) UScp nrf1

0 100 200 300 400 500 600
Iteration

0

25

50

75

100

125

150

175

Ti
m

e
(s

)

Best Time Comparison
 scpnrg1

SBOA - Time
PSO - Time
GWO - Time

(c) UScp nrg1

Figure 18. Time analysis of the instances UScp nre1, UScp nrf1 and UScp nrg1.

0 100 200 300 400 500 600
Iteration

0

20

40

60

80

100

Ti
m

e
(s

)

Best Time Comparison
 scpnrh1

SBOA - Time
PSO - Time
GWO - Time

(a) UScp nrh1

0 100 200 300 400 500 600
Iteration

0.00

0.05

0.10

0.15

0.20

Ti
m

e
(s

)

Best Time Comparison
 uscpuclr10

SBOA - Time
PSO - Time
GWO - Time

(b) UScp clr10

0 100 200 300 400 500 600
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
(s

)

Best Time Comparison
 uscpuclr11

SBOA - Time
PSO - Time
GWO - Time

(c) UScp clr11

Figure 19. Time analysis of the instances UScp nrh1, UScp clr10 and UScp clr11.

0 100 200 300 400 500 600
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e
(s

)

Best Time Comparison
 uscpuclr12

SBOA - Time
PSO - Time
GWO - Time

(a) UScp clr12

0 100 200 300 400 500 600
Iteration

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Ti
m

e
(s

)

Best Time Comparison
 uscpucyc06

SBOA - Time
PSO - Time
GWO - Time

(b) UScp cyc06

0 100 200 300 400 500 600
Iteration

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(s

)

Best Time Comparison
 uscpucyc07

SBOA - Time
PSO - Time
GWO - Time

(c) UScp cyc07

Figure 20. Time analysis of the instances UScp clr12, UScp cyc06 and UScp cyc07.

Mathematics 2025, 13, 2482 23 of 28

0 100 200 300 400 500 600
Iteration

2

4

6

8

10

12

14

Ti
m

e
(s

)

Best Time Comparison
 uscpucyc08

SBOA - Time
PSO - Time
GWO - Time

UScp cyc08

Figure 21. Time analysis of the instance cyc08.

Statistical Tests

To validate our work, Tables 15–18 show the statistical significance tests for the algo-
rithms worked on: SBP, PSO and GWO. This table shows the p-values that act as indicators
of statistical significance. We use the nonparametric Wilcoxon–Mann–Whitney test to
perform this validation [44] since we have two independent samples and we cannot assume
normality for at least one of them. The hypotheses considered are the following:

H0 : µA ≥ µB,

H1 : µA < µB

where µA and µB represent the average value delivered by algorithms A and B. We consider
that if the p-value is less than 0.05, the hypothesis H0 will be rejected, with hypothesis H1

being accepted and these cases are highlighted in bold and underlined in the Tables.

Table 15. Average p-value of the SBOA compared with PSO and GWO for SCP41, ScP42, SCP51,
SCP52, SCP61 and SCP62.

4.1 4.2 5.1 5.2 6.1 6.2

SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO

SBO - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 0.03 - ≥0.05 ≥0.05

PSO ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - 0.02 ≥0.05 - ≥0.05

GWO ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - 0.03 0.02 - ≥0.05 ≥0.05 -

Table 16. Average p-value of the SBOA compared with PSO and GWO for a1, a2, b1, b2, c1, c2, d1
and d2.

a.1 a.2 b.1 b.2

SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO

SBO - ≥0.05 ≥0.05 - 0.05 - - ≥0.05 ≥0.05 - ≥0.05 ≥0.05

PSO ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 1.0 - ≥0.05 ≥0.05 - ≥0.05

GWO ≥0.05 ≥0.05 - - ≥0.05 - 0.2 ≥0.05 - ≥0.05 ≥0.05 -

c.1 c.2 d.1 d.2

SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO

SBO - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05

PSO ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05

GWO ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 -

The BSBOA demonstrated remarkable ability in solving the Set Covering Problem
(SCP) and its unicost variant (USCP) using the V3 transfer function and elitist rule. For the
SCP, it stood out by generating high-quality solutions with lower costs compared to meta-
heuristics, like GWO and PSO; in the USCP, where costs are homogeneous, it maintained
competitive performance with less pronounced differences. Additionally, the BSBOA

Mathematics 2025, 13, 2482 24 of 28

achieved favorable execution times, establishing itself as an efficient and versatile option
for combinatorial optimization problems.

Table 17. Average p-value of the SBOA compared with PSO and GWO for nre1, nre2, nrf1, nrf2, nrg1,
nrg2, nrh1 and nrh2.

nre1 nre2 nrf1 nrf2

SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO

SBO - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05

PSO ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05

GWO ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - 0.33 ≥0.05 -

nrg1 nrg2 nrh1 nrh2

SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO

SBO - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - 0.003 0.02 - ≥0.05 ≥0.05

PSO ≥0.05 - ≥0.05 ≥0.05 - ≥0.05 0.03 - ≥0.05 ≥0.05 - ≥0.05

GWO ≥0.05 ≥0.05 - ≥0.05 ≥0.05 - 0.02 ≥0.05 - ≥0.05 ≥0.05 -

Table 18. Average p-value of the SBOA compared with PSO and GWO for u41, u51, u61, ua1, ub1,
uc1, uclr10, uclr12, ucyc06, ucyc07, ud1, unre1, unrf1, unre1 and unrh1.

u41 u51 u61 ua1

SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO

SBO - ≥0.05 0.0 - ≥0.05 0.0 - ≥0.05 0.0 - ≥0.05 0.0

PSO ≥0.05 - 0.0 ≥0.05 - 0.0 ≥0.05 - 0.0 ≥0.05 - 0.0

GWO 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 -

ub1 uc1 uclr10 uclr12

SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO

SBO - ≥0.05 0.0 - 0.0 0.0 - ≥0.05 ≥0.05 - 0.5 ≥0.05

PSO ≥0.05 - 0.0 0.0 - 0.0 ≥0.05 - ≥0.05 ≥0.05 - ≥0.05

GWO 0.0 0.0 - 0.0 0.0 - ≥0.05 ≥0.05 - ≥0.05 ≥0.05 -

ucyc06 ucyc07 ucyc07 ud1

SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO

SBO - ≥0.05 0.12 - ≥0.05 0.0 - ≥0.05 0.0 - ≥0.05 0.0

PSO ≥0.05 - ≥0.05 ≥0.05 - 0.0 ≥0.05 - 0.0 ≥0.05 - 0.0

GWO ≥0.05 ≥0.05 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 -

unre1 unrf1 unre1 unrh1

SBO PSO GWO SBO PSO GWO SBO PSO GWO SBO PSO GWO

SBO - 0.0 0.04 - 0.0 ≥0.05 - 0.0 0.0 - 0.0 0.0

PSO 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0

GWO 0.04 0.0 - ≥0.05 0.0 - 0.0 0.0 - 0.0 0.0 -

7. Discussion
The experimental outcomes consistently show BSBOA’s ability to yield high-quality

solutions, often surpassing GWO and PSO in solution value and robustness (lower stan-
dard deviations) for the SCP, while maintaining competitive performance for the USCP.
The computational analysis confirms BSBOA’s operational efficiency with a generally low
computational burden.

BSBOA’s effectiveness stems from SBOA’s core design, inspired by the secretary bird’s
natural behaviors of hunting and evasion, fostering a well-balanced interplay between
exploration and exploitation crucial for NP-hard problems. Its systematic adaptation from

Mathematics 2025, 13, 2482 25 of 28

continuous to binary domains, involving a rigorous exploration of eight transfer functions
and five discretization methods, was pivotal. The selection of the V3 transfer function and
the Elitist rule, based on prior research for optimal exploration–exploitation balance in
medium-sized problems, ensures this effective translation and harmonious interaction with
the discrete solution space.

However, it is crucial to acknowledge certain trade-offs and constraints. The iterative
nature of the binarization process, applying transfer functions and rules in each cycle,
introduces a computational overhead that could be significant for extremely large-scale
problems or real-time systems, despite current observed efficiencies. Moreover, while our
systematic validation identified an optimal configuration (V3 and Elitist) for the tested
instances, the generalizability of this specific setup across all possible SCP and USCP
variations, particularly those with distinct structural properties or much higher dimensions,
requires further extensive validation. The current reliance on standard benchmark instances,
while a common practice, also represents a limitation in fully assessing its performance in
the intricate, diverse conditions of real-world applications.

These considerations underscore the ongoing need for refinement and broader val-
idation. Such endeavors are vital to fully realize BSBOA’s potential for industrial and
engineering challenges.

8. Conclusions
In this work, a solution to the SCP was provided using the SBOA, which is inspired

by the natural behavior of the secretary bird. On the one hand, the SBOA was originally
designed to work on continuous space optimization problems; on the other hand, the SCP
is a binary problem. Several binarization techniques were proposed to adapt the algorithm
to the discrete domain. Combinations of eight transfer functions were used, along with
five discretization methods. Subsequently, the binary version of the SBOA was compared
with the GWO and PSO algorithms, providing a solution to the SCP and its USCP variant.
The BSBOA is positioned as a robust and effective tool for resolving both the SCP and USCP,
excelling in solution quality and execution efficiency compared to GWO and PSO. Its ability
to handle different levels of complexity and balance exploration and exploitation makes it
ideal for practical optimization applications. Future work is to extend its applicability to
more complex and large-scale problems, as well as to optimize its performance in terms of
time and accuracy.

Author Contributions: Conceptualization, B.C., F.C.-C. and R.S.; methodology, B.C., F.C.-C.,
C.P.T.M.-l., J.L.A. and F.S.-P.; software, F.C.-C., C.P.T.M.-l., J.L.A. and F.S.-P.; validation, B.C.,
F.C.-C., R.S., G.A. and G.G.; formal analysis, C.P.T.M.-l., J.L.A. and F.S.-P.; investigation, B.C.,
F.C.-C., R.S., C.P.T.M.-l., J.L.A., F.S.-P., G.A. and G.G.; resources, C.P.T.M.-l., J.L.A., F.S.-P. and G.A.;
writing—original draft preparation, C.P.T.M.-l., J.L.A., F.S.-P. and G.A.; writing—review and editing,
B.C., F.C.-C., R.S. and G.G.; supervision, B.C., F.C.-C. and R.S.; funding acquisition, B.C. and R.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding authors.

Acknowledgments: Felipe Cisternas-Caneo was supported by the National Agency for Research and
Development ANID BECAS/DOCTORADO NACIONAL 21230203.

Conflicts of Interest: The authors declare no conflicts of interest.

Mathematics 2025, 13, 2482 26 of 28

Abbreviations
The following abbreviations are used in this manuscript:

SBOA Secretary Bird Optimization Algorithm
BSBOA Binary Secretary Bird Optimization Algorithm
PSO Particle Swarm Optimization
GWO Grey Wolf Optimizer
ACO Ant Colony Optimization
GA Genetic Algorithm
BCSO Binary Cat Swarm Optimization
BBHA Binary Black Hole Algorithm
CS Cuckoo Search
TS Tabu Search
SCP Set Covering Problem
USCP Unicost Set Covering Problem

References
1. Coelho, P.; Silva, C. Parallel Metaheuristics for shop scheduling: Enabling industry 4.0. Procedia Comput. Sci. 2021, 180, 778–786.

[CrossRef]
2. Ghotb, S.; Sowlati, T.; Mortyn, J. Scheduling of log logistics using a metaheuristic approach. Expert Syst. Appl. 2024, 238, 122008.

[CrossRef]
3. Núñez-López, J.M.; Segovia-Hernández, J.G.; Sánchez-Ramírez, E.; Ponce-Ortega, J.M. Integrating metaheuristic methods and

deterministic strategies for optimizing supply chain equipment design in process engineering. Chem. Eng. Res. Des. 2025,
214, 93–104. [CrossRef]

4. Dhouib, S.; Zouari, A. Adaptive iterated stochastic metaheuristic to optimize holes drilling path in manufacturing industry: The
Adaptive-Dhouib-Matrix-3 (A-DM3). Eng. Appl. Artif. Intell. 2023, 120, 105898. [CrossRef]

5. Yang, C.L.; Yilma, A.A.; Sutrisno, H.; Woldegiorgis, B.H.; Nguyen, T.P.Q. LSTMbased framework with metaheuristic optimizer
for manufacturing process monitoring. Alex. Eng. J. 2023, 83, 43–52. [CrossRef]

6. Huang, B.; Tang, L.; Baldacci, R.; Wang, G.; Sun, D. A metaheuristic algorithm for a locomotive routing problem arising in the
steel industry. Eur. J. Oper. Res. 2023, 308, 385–399. [CrossRef]

7. Zuhanda, M.K.; Hasibuan, S.A.R.S.; Napitupulu, Y.Y.; Hartono. An exact and metaheuristic optimization framework for solving
Vehicle Routing Problems with Shipment Consolidation using population-based and Swarm Intelligence. Decis. Anal. J. 2024,
13, 100517. [CrossRef]

8. Lopes, J.; Guimarães, T.; Duarte, J.; Santos, M. Enhancing Surgery Scheduling in Health Care Settings with Metaheuristic
Optimization Models: Algorithm Validation Study. JMIR Med. Inform. 2025, 13, e57231. [CrossRef]

9. Mzili, T.; Mzili, I.; Riffi, M.E.; Kurdi, M.; Ali, A.H.; Pamucar, D.; Abualigah, L. Enhancing COVID-19 vaccination and medication
distribution routing strategies in rural regions of Morocco: A comparative metaheuristics analysis. Inform. Med. Unlocked 2024,
46, 101467. [CrossRef]

10. Mostafaei, K.; Yousefi, M.; Kreuzer, O.; Kianpour, M.N. Simulation-based mineral prospectivity modeling and Gray Wolf
optimization algorithm for delimiting exploration targets. Ore Geol. Rev. 2025, 177, 106458. [CrossRef]

11. Canales Bustos, L.; Santibañez González, E.; Candia Véjar, A. A multi objective optimization model for the design of an effective
decarbonized supply chain in mining. Int. J. Prod. Econ. 2017, 193, 449–464. [CrossRef]

12. Moradi, N.; Mafakheri, F.; Wang, C. Set covering routing problems: A review and classification scheme. Comput. Ind. Eng. 2024,
198, 110730. [CrossRef]

13. Karp, R.M. On the computational complexity of combinatorial problems. Networks 1975, 5, 45–68. [CrossRef]
14. Šarac, D.; Kopić, M.; Mostarac, K.; Kujačić, M.; Jovanović, B. Application of set covering location problem for organizing the

public postal network. PROMET-Traffic Transp. 2016, 28, 403–413. [CrossRef]
15. Mesquita, M.; Paias, A. Set partitioning/covering-based approaches for the integrated vehicle and crew scheduling problem.

Comput. Oper. Res. 2008, 35, 1562–1575. [CrossRef]
16. Crawford, B.; Soto, R.; Monfroy, E. Cultural algorithms for the set covering problem. In Proceedings of the Advances in

Swarm Intelligence: 4th International Conference, ICSI 2013, Harbin, China, 12–15 June 2013; Proceedings, Part II 4; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 27–34.

17. Wang, Y.; Pan, S.; Al-Shihabi, S.; Zhou, J.; Yang, N.; Yin, M. An improved configuration checking-based algorithm for the unicost
set covering problem. Eur. J. Oper. Res. 2021, 294, 476–491. [CrossRef]

http://doi.org/10.1016/j.procs.2021.01.328
http://dx.doi.org/10.1016/j.eswa.2023.122008
http://dx.doi.org/10.1016/j.cherd.2024.12.021
http://dx.doi.org/10.1016/j.engappai.2023.105898
http://dx.doi.org/10.1016/j.aej.2023.10.006
http://dx.doi.org/10.1016/j.ejor.2022.11.006
http://dx.doi.org/10.1016/j.dajour.2024.100517
http://dx.doi.org/10.2196/57231
http://dx.doi.org/10.1016/j.imu.2024.101467
http://dx.doi.org/10.1016/j.oregeorev.2025.106458
http://dx.doi.org/10.1016/j.ijpe.2017.08.012
http://dx.doi.org/10.1016/j.cie.2024.110730
http://dx.doi.org/10.1002/net.1975.5.1.45
http://dx.doi.org/10.7307/ptt.v28i4.1962
http://dx.doi.org/10.1016/j.cor.2006.09.001
http://dx.doi.org/10.1016/j.ejor.2021.02.015

Mathematics 2025, 13, 2482 27 of 28

18. Wu, C.; Murray, A.T. Optimizing public transit quality and system access: The multiple-route, maximal covering/shortest-path
problem. Environ. Plan. B Plan. Des. 2005, 32, 163–178. [CrossRef]

19. Wang, R.L.; Okazaki, K. An improved genetic algorithm with conditional genetic operators and its application to set-covering
problem. Soft Comput. 2007, 11, 687–694. [CrossRef]

20. Crawford, B.; Soto, R.; Monfroy, E.; Palma, W.; Castro, C.; Paredes, F. Parameter tuning of a choice-function based hyperheuristic
using particle swarm optimization. Expert Syst. Appl. 2013, 40, 1690–1695. [CrossRef]

21. Ren, Z.G.; Feng, Z.R.; Ke, L.J.; Zhang, Z.J. New ideas for applying ant colony optimization to the set covering problem. Comput.
Ind. Eng. 2010, 58, 774–784. [CrossRef]

22. Caserta, M. Tabu search-based metaheuristic algorithm for large-scale set covering problems. In Metaheuristics: Progress in
Complex Systems Optimization; Springer: Boston, MA, USA, 2007; pp. 43–63.

23. Naji-Azimi, Z.; Toth, P.; Galli, L. An electromagnetism metaheuristic for the unicost set covering problem. Eur. J. Oper. Res. 2010,
205, 290–300. [CrossRef]

24. Sundar, S.; Singh, A. A hybrid heuristic for the set covering problem. Oper. Res. 2012, 12, 345–365. [CrossRef]
25. Reyes, V.; Araya, I. A GRASP-based scheme for the set covering problem. Oper. Res. 2021, 21, 2391–2408. [CrossRef]
26. Fu, Y.; Liu, D.; Chen, J.; He, L. Secretary bird optimization algorithm: A new metaheuristic for solving global optimization

problems. Artif. Intell. Rev. 2024, 57, 1–102. [CrossRef]
27. Cochran, J.K.; Uribe, A.M. A set covering formulation for agile capacity planning within supply chains. Int. J. Prod. Econ. 2005,

95, 139–149. [CrossRef]
28. Nam, S.; Shen, H.; Ryu, C.; Shin, J.G. SCP-Matrix based shipyard APS design: Application to long-term production plan. Int. J.

Nav. Archit. Ocean Eng. 2018, 10, 741–761. [CrossRef]
29. Mol, G.; Ermiş, M. Solving the Large-Scale Crew Pairing Problem in the Airline Industry Using the Column Generation Method.

In Proceedings of the International Symposium for Production Research, Budva, Montenegro, 9–11 October 2024; Springer: Cham,
Switzerland, 2024; pp. 333–348.

30. Borne, P.; Tangour, F. Metaheuristics for the Optimization in Planning and Scheduling. IFAC Proc. Vol. 2007, 40, 1–7. [CrossRef]
31. Niu, B.; Wang, Y.; Liu, J.; Yue, G.X.G. Path planning for unmanned aerial vehicles in complex environment based on an improved

continuous ant colony optimisation. Comput. Electr. Eng. 2025, 123, 110034. [CrossRef]
32. Yang, X.; Li, H.; Huang, Y. An adaptive dynamic multi-swarm particle swarm optimization with stagnation detection and spatial

exclusion for solving continuous optimization problems. Eng. Appl. Artif. Intell. 2023, 123, 106215. [CrossRef]
33. Becerra-Rozas, M.; Lemus-Romani, J.; Cisternas-Caneo, F.; Crawford, B.; Soto, R.; Astorga, G.; Castro, C.; García, J. Continuous

metaheuristics for binary optimization problems: An updated systematic literature review. Mathematics 2022, 11, 129. [CrossRef]
34. Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting continuous metaheuristics to work in binary search

spaces. Complexity 2017, 2017, 8404231. [CrossRef]
35. Lanza-Gutierrez, J.M.; Crawford, B.; Soto, R.; Berrios, N.; Gomez-Pulido, J.A.; Paredes, F. Analyzing the effects of binarization

techniques when solving the set covering problem through swarm optimization. Expert Syst. Appl. 2017, 70, 67–82. [CrossRef]
36. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2022.
37. Beasley, J.E.; Jörnsten, K. Enhancing an algorithm for set covering problems. Eur. J. Oper. Res. 1992, 58, 293–300. [CrossRef]
38. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE International

Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October
1997; IEEE: Piscataway, NJ, USA, 1997; Volume 5, pp. 4104–4108.

39. Emary, E.; Zawbaa, H.M.; Hassanien, A.E. Binary grey wolf optimization approaches for feature selection. Neurocomputing 2016,
172, 371–381. [CrossRef]

40. Houssein, E.H.; Saeed, M.K.; Hu, G.; Al-Sayed, M.M. Metaheuristics for solving global and engineering optimization problems:
Review, applications, open issues and challenges. Arch. Comput. Methods Eng. 2024, 31, 4485–4519. [CrossRef]

41. Crawford, B.; Soto, R.; Lemus-Romani, J.; Becerra-Rozas, M.; Lanza-Gutiérrez, J.M.; Caballé, N.; Castillo, M.; Tapia, D.; Cisternas-
Caneo, F.; García, J.; et al. Q-learnheuristics: Towards data-driven balanced metaheuristics. Mathematics 2021, 9, 1839. [CrossRef]

42. Lemus-Romani, J.; Becerra-Rozas, M.; Crawford, B.; Soto, R.; Cisternas-Caneo, F.; Vega, E.; Castillo, M.; Tapia, D.; Astorga, G.;
Palma, W.; et al. A novel learning-based binarization scheme selector for swarm algorithms solving combinatorial problems.
Mathematics 2021, 9, 2887. [CrossRef]

http://dx.doi.org/10.1068/b31104
http://dx.doi.org/10.1007/s00500-006-0131-1
http://dx.doi.org/10.1016/j.eswa.2012.09.013
http://dx.doi.org/10.1016/j.cie.2010.02.011
http://dx.doi.org/10.1016/j.ejor.2010.01.035
http://dx.doi.org/10.1007/s12351-010-0086-y
http://dx.doi.org/10.1007/s12351-019-00514-z
http://dx.doi.org/10.1007/s10462-024-10729-y
http://dx.doi.org/10.1016/j.ijpe.2003.11.014
http://dx.doi.org/10.1016/j.ijnaoe.2017.10.003
http://dx.doi.org/10.3182/20070927-4-RO-3905.00003
http://dx.doi.org/10.1016/j.compeleceng.2024.110034
http://dx.doi.org/10.1016/j.engappai.2023.106215
http://dx.doi.org/10.3390/math11010129
http://dx.doi.org/10.1155/2017/8404231
http://dx.doi.org/10.1016/j.eswa.2016.10.054
http://dx.doi.org/10.1016/0377-2217(92)90215-U
http://dx.doi.org/10.1016/j.neucom.2015.06.083
http://dx.doi.org/10.1007/s11831-024-10168-6
http://dx.doi.org/10.3390/math9161839
http://dx.doi.org/10.3390/math9222887

Mathematics 2025, 13, 2482 28 of 28

43. Singh, P. The Fast Forward Quantum Optimization Algorithm: A study of convergence and novel unconstrained optimization.
Comput. Methods Appl. Mech. Eng. 2025, 443, 118039. [CrossRef]

44. Mann, H.B.; Whitney, D.R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math.
Stat. 1947, 18, 50–60. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cma.2025.118039
http://dx.doi.org/10.1214/aoms/1177730491

	Introduction
	Set Covering Problem
	Formal Mathematical Formulation
	SCP Practical Example
	Problem Definition
	Mathematical Formulation
	Optimal Solution

	Unicost Set Covering Problem (Unicost SCP)

	Continuous Metaheuristics Solving Set Covering Problem
	Secretary Bird Optimization Algorithm
	Exploration Phase (Hunting Strategy)
	Exploitation Phase (Escape Strategy)
	Solution Selection

	Binary Secretary Bird Optimization Algorithm
	Experimental Result
	Parameter Setting
	SCP and USCP Instances Resolved
	Results of SCP
	Results of USCP

	Discussion
	Conclusions
	References

