Bat Algorithm and Cuckoo Search: A Tutorial

Xin-She Yang

Abstract. Nature-inspired metaheuristic algorithms have attracted much attention
in the last decade, and new algorithms have emerged almost every year with a vast,
ever-expanding literature. In this chapter, we briefly review two latest metaheuris-
tics: bat algorithm and cuckoo search for global optimization. Bat algorithm was
proposed by Xin-She Yang in 2010, inspired by the echolocation of microbats, while
cuckoo search was developed by Xin-She Yang and Suash Deb in 2009, inspired by
the brood parasitism of some cuckoo species. Both algorithms have shown superi-
ority over many other metaheuristics over a wide range of applications.

1 Bat Algorithm

1.1 Behaviour of Microbats

Bats are fascinating animals. They are the only mammals with wings and they also
have advanced capability of echolocation. It is estimated that there are about 1000
different species which account for up to 20% of all mammal species. Their size
ranges from tiny bumblebee bats (of about 1.5 to 2 g) to giant bats with a wingspan
of about 2 m and weight up to about 1 kg. Microbats typically have a forearm length
of about 2.2 to 11 c¢m [14, [15]]. Most bats uses echolocation to a certain degree;
among all the species, microbats are a famous example as microbats use echoloca-
tion extensively, while megabats do not [} [3].

Most microbats are insectivores. Microbats use a type of sonar, called echoloca-
tion, to detect prey, avoid obstacles, and locate their roosting crevices in the dark.
These bats emit a very loud sound pulse and listen for the echo that bounces back
from the surrounding objects. Their pulses vary in properties and can be corre-
lated with their hunting strategies, depending on the species. Most bats use short,
frequency-modulated signals to sweep through about an octave, while others more
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often use constant-frequency signals for echolocation. The bandwidth of echoloca-
tion signals varies with species, and often increases by using more harmonics.

Studies show that microbats use the time delay from the emission and detection
of the echo, the time difference between their two ears, and the loudness variations
of the echoes to build up three dimensional scenario of the surrounding. They can
detect the distance and orientation of the target, the type of prey, and even the mov-
ing speed of the prey such as small insects. Indeed, studies suggested that bats seem
to be able to discriminate targets by the variations of the Doppler effect induced by
the wing-flutter rates of the target insects [1].

1.2 Acoustics of Echolocation

Though each pulse only lasts a few thousandths of a second (up to about 8 to 10 ms),
however, it has a constant frequency which is usually in the region of 25 kHz to 150
kHz. The typical range of frequencies for most bat species are in the region between
25 kHz and 100 kHz, though some species can emit higher frequencies up to 150
kHz. Each ultrasonic burst may last typically 5 to 20 ms, and microbats emit about
10 to 20 such sound bursts every second. When hunting for prey, the rate of pulse
emission can be sped up to about 200 pulses per second when they fly near their
prey. Such short sound bursts imply the fantastic ability of the signal processing
power of bats. In fact, studies show the integration time of the bat ear is typically
about 300 to 400 us.

As the speed of sound in air is typically v = 340 m/s at room temperature, the
wavelength A of the ultrasonic sound bursts with a constant frequency f is given by

A s (H
which is in the range of 2 mm to 14 mm for the typical frequency range from 25
kHz to 150 kHz. Such wavelengths are in the same order of their prey sizes [11 [14]].

Amazingly, the emitted pulse could be as loud as 110 dB, and, fortunately, they
are in the ultrasonic region. The loudness also varies from the loudest when search-
ing for prey and to a quieter base when homing towards the prey. The travelling
range of such short pulses are typically a few metres, depending on the actual fre-
quencies. Microbats can manage to avoid obstacles as small as thin human hairs.

Obviously, some bats have good eyesight, and most bats also have very sensitive
smell sense. In reality, they will use all the senses as a combination to maximize
the efficient detection of prey and smooth navigation. However, here we are only
interested in the echolocation and the associated behaviour.

Such echolocation behaviour of microbats can be formulated in such a way that
it can be associated with the objective function to be optimized, and this makes it
possible to formulate new optimization algorithms. We will first outline the basic
formulation of the Bat Algorithm (BA) and then discuss its implementation.



Bat Algorithm and Cuckoo Search: A Tutorial 423

1.3 Bat Algorithm

If we idealize some of the echolocation characteristics of microbats, we can develop
various bat-inspired algorithms or bat algorithms [20]]. For simplicity, we now
use the following approximate or idealized rules:

1. All bats use echolocation to sense distance, and they also ‘know’ the difference
between food/prey and background barriers;

2. Bats fly randomly with velocity v; at position x; with a fixed frequency fuin (or
wavelength 1), varying wavelength A (or frequency f) and loudness A to search
for prey. They can automatically adjust the wavelength (or frequency) of their
emitted pulses and adjust the rate of pulse emission r € [0, 1], depending on the
proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) Ag to a minimum value Apjp.

Another obvious simplification is that no ray tracing is used in estimating the time
delay and three dimensional topography. Though this might be a good feature for
the application in computational geometry; however, we will not use this, as it is
more computationally extensive in multidimensional cases.

In addition to these simplified assumptions, we also use the following approxima-
tions, for simplicity. In general the frequency f in a range [fiin, fmax] corresponds
to a range of wavelengths [Amin, Amax]. For example, a frequency range of [20 kHz,
500 kHz] corresponds to a range of wavelengths from 0.7 mm to 17 mm.

For a given problem, we can also use any wavelength for the ease of implemen-
tation. In the actual implementation, we can adjust the range by adjusting the fre-
quencies (or wavelengths). The detectable range (or the largest wavelength) should
be chosen such that it is comparable to the size of the domain of interest, and then
toning down to smaller ranges. Furthermore, we do not necessarily have to use the
wavelengths themselves at all, instead, we can also vary the frequency while fixing
the wavelength A. This is because A and f are related, as A f is constant. We will
use this later approach in our implementation.

For simplicity, we can assume f € [0, fmax]. We know that higher frequencies
have short wavelengths and travel a shorter distance. For bats, the typical ranges are
a few metres. The rate of pulse can simply be in the range of [0, 1] where 0 means
no pulses at all, and 1 means the maximum rate of pulse emission.

Based on the above approximations and idealization, the basic steps of the Bat
Algorithm (BA) can be summarized as the pseudo code shown in Fig. [Il

1.3.1 Movement of Virtual Bats

In the standard bat algorithm [20}24]], we have to use virtual bats. We have to define
the rules how their positions x; and velocities v; in a d-dimensional search space are
updated. The new solutions x} and velocities v} at time step  are given by

fi :fmin“" (fmax_fmin)ﬁy (2)
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Bat Algorithm

Initialize a population of n bats x; (i =1,2,...,n) and v;
Initialize frequencies f;, pulse rates r; and the loudness A;
while (1 <Max number of iterations)
Generate new solutions by adjusting frequency,
and updating velocities and locations/solutions [(2)) to )]
if (rand > r;)
Select a solution among the best solutions
Generate a local solution around the selected best solution
end if
Generate a new solution by flying randomly
if (rand < A; & f(x;) < f(x))
Accept the new solutions
Increase r; and reduce A;
end if
Rank the bats and find the current best x
end while

Fig. 1 Pseudo code of the bat algorithm (BA).

Vil =yl (= x.) fi, 3)
Xt =i, “)

where f8 € [0,1] is a random vector drawn from a uniform distribution. Here x,
is the current global best location (solution) which is located after comparing all
the solutions among all the n bats at each iteration ¢. As the product A;f; is the
velocity increment, we can use f; (or 4; ) to adjust the velocity change while fixing
the other factor A; (or f;), depending on the type of the problem of interest. In our
implementation, we will use fii, = 0 and fmax = O(1), depending on the domain
size of the problem of interest. Initially, each bat is randomly assigned a frequency
which is drawn uniformly from [fiin, fmax]-

For the local search part, once a solution is selected among the current best solu-
tions, a new solution for each bat is generated locally using random walk

Xnew = Xold + € Al7 5

where € is a random number which can be drawn from a uniform distribution in
[—1,1] or a Gaussian distribution, while A" =<A! > is the average loudness of all
the bats at this time step.

The update of the velocities and positions of bats have some similarity to the
procedure in the standard particle swarm optimization, as f; essentially controls the
pace and range of the movement of the swarming particles. To a degree, BA can be
considered as a balanced combination of the standard particle swarm optimization
and the intensive local search controlled by the loudness and pulse rate.
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1.3.2 Loudness and Pulse Emission

Furthermore, the loudness A; and the rate r; of pulse emission have to be updated
accordingly as the iterations proceed. As the loudness usually decreases once a bat
has found its prey, while the rate of pulse emission increases, the loudness can be
chosen as any value of convenience. For simplicity, we can use Ag = 1 and A, =0,
assuming A, = 0 means that a bat has just found the prey and temporarily stop
emitting any sound. Now we have

A = gl (©6)

and

rt =11 —exp(-y)], (M
where o and y are constants. In fact, & is similar to the cooling factor of a cooling
schedule in simulated annealing. For any 0 < or < 1 and y > 0, we have

Al — 0, P

i 7, as t — oo, ®)

In the simplest case, we can use o = 7, and we have used ¢ = ¥y = 0.9 in our
simulations.

The choice of parameters requires some experimenting. Initially, each bat should
have different values of loudness and pulse emission rate, and this can be achieved
by randomization. For example, the initial loudness A? can typically be around [1,2],
while the initial emission rate ¥ can be around zero, or any value ¥ € [0, 1] if using
[@. Their loudness and emission rates will be updated only if the new solutions
are improved, which means that these bats are moving towards the optimal solution

[18. 20].

1.3.3 Discussions

The bat algorithm is much superior to other algorithms in terms of accuracy and
efficiency 23] If we replace the variations of the frequency f; by a random
parameter and setting A; = 0 and r; = 1, the bat algorithm essentially becomes the
standard particle swarm optimization (PSO).

Similarly, if we do not use the velocities, we use fixed loudness and rate: A; and
r;. For example, A; = r; = 0.7, this algorithm is virtually reduced to a simple har-
mony search (HS) [19], as the frequency/wavelength change is essentially the pitch
adjustment, while the rate of pulse emission is similar to the harmonic acceptance
rate (here with a twist) in the harmony search algorithm. The current studies imply
that the proposed new algorithm is potentially more powerful and thus should be
investigated further in many applications of engineering and industrial optimization
problems.
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1.4 Further Topics

Bat algorithms start to attract attention, as many researchers have written to the
authors to request a demo code. More applications for both single objective and
multiobjective optimization problems have appeared in the literature 24, [16].

From the formulation of the bat algorithm and its implementation and compari-
son, we can see that it is a very promising algorithm. It is potentially more powerful
than particle swarm optimization and genetic algorithms as well as harmony search.
The primary reason is that BA uses a good combination of major advantages of
these algorithms in some way. Moreover, PSO and harmony search are the special
cases of the bat algorithm under appropriate simplifications.

In addition, the fine adjustment of the parameters ¢ and y can affect the conver-
gence rate of the bat algorithm. In fact, parameter o acts in a similar role as the cool-
ing schedule in the simulated annealing. Though the implementation is slightly more
complicated than those for many other metaheuristic algorithms; however, it does
show that it utilizes a balanced combination of the advantages of existing success-
ful algorithms with innovative feature based on the echolocation behaviour of bats.
New solutions are generated by adjusting frequencies, loudness and pulse emission
rates, while the proposed solution is accepted or not, depending on the quality of the
solutions controlled or characterized by loudness and pulse rate which are in turn
related to the closeness or the fitness of the locations/solution to the global optimal
solution.

The exciting results suggest that more studies will be needed to carry out the
sensitivity analysis, to analyze the rate of algorithm convergence, and to improve the
convergence rate even further. More extensive comparison studies with a more wide
range of existing algorithms using much tough test functions in higher dimensions
will pose more challenges to all optimization algorithms, and thus such comparisons
will potentially reveal the virtues and weakness of all the algorithms of interest.

An interesting extension will be to use different schemes of wavelength or fre-
quency variations instead of the current linear implementation. In addition, the rates
of pulse emission and loudness can also be varied in a more sophisticated man-
ner. Another extension for discrete problems is to use the time delay between pulse
emission and the echo bounced back. For example, in the travelling salesman prob-
lem, the distance between two adjacent nodes/cities can easily be coded as the time
delay.

As microbats use time difference between their two ears to obtain three-
dimensional information, they can identify the type of prey and the velocity of a fly-
ing insect. Therefore, a further natural extension to the current bat algorithm would
be to use the directional echolocation and Doppler effect, which may lead to even
more interesting variants and new algorithms.
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2 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,
developed in 2009 by Xin-She Yang of Cambridge University and Suash Deb of
C. V. Raman College of Engineering. CS was based on the brood parasitism of
some cuckoo species. In addition, this algorithm is enhanced by the so-called Lévy
flights, rather than by simple isotropic random walks. Recent studies showed that
CS is potentially far more efficient than PSO and genetic algorithms a3].

2.1 Cuckoo Breeding Behaviour

Cuckoo are fascinating birds, not only because of the beautiful sounds they can
make, but also because of their aggressive reproduction strategy. Some species such
as the ani and Guira cuckoos lay their eggs in communal nests, though they may
remove others’ eggs to increase the hatching probability of their own eggs. Quite a
number of species engage the obligate brood parasitism by laying their eggs in the
nests of other host birds (often other species) [9].

There are three basic types of brood parasitism: intraspecific brood parasitism,
cooperative breeding, and nest takeover. Some host birds can engage direct conflict
with the intruding cuckoos. If a host bird discovers the eggs are not their owns, they
will either get rid of these alien eggs or simply abandon its nest and build a new nest
elsewhere. Some cuckoo species such as the New World brood-parasitic Tapera have
evolved in such a way that female parasitic cuckoos are often very specialized in the
mimicry in colour and pattern of the eggs of a few chosen host species. This reduces
the probability of their eggs being abandoned and thus increases their reproductivity.

In addition, the timing of egg-laying of some species is also amazing. Parasitic
cuckoos often choose a nest where the host bird just laid its own eggs. In general, the
cuckoo eggs hatch slightly earlier than their host eggs. Once the first cuckoo chick
is hatched, the first instinct action it will take is to evict the host eggs by blindly
propelling the eggs out of the nest, which increases the cuckoo chick’s share of food
provided by its host bird. Studies also show that a cuckoo chick can also mimic the
call of host chicks to gain access to more feeding opportunity.

2.2 Lévy Flights

Various studies have shown that the flight behaviour of many animals and insects
may pose some typical characteristics of Lévy flights [2,[10]. A recent study showed
that fruit flies or Drosophila melanogaster, explore their landscape using a series of
straight flight paths punctuated by a sudden 90° turn, leading to a Lévy-flight-style
intermittent scale free search pattern [12, [13]].

Studies on human behaviour such as the Ju/’hoansi hunter-gatherer foraging pat-
terns also show the typical feature of Lévy flights [4]]. Even light can be related to
Lévy flights. Subsequently, such behaviour has been applied to optimization and
optimal search, and preliminary results show its promising capability [10,11].
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2.3 Cuckoo Search

For simplicity in describing our standard Cuckoo Search developed by Xin-She
Yang and Suash Deb [211,22]], we now use the following three idealized rules:

e FEach cuckoo lays one egg at a time, and dumps its egg in a randomly chosen
nest;

e Thebestnests with highest quality eggs will be carried over to the next generations;

e The number of available host nests is fixed, and the egg laid by a cuckoo is
discovered by the host bird with a probability p, € [0, 1]. In this case, the host bird
can either get rid of the egg, or simply abandon the nest and build a completely
new nest.

As a further approximation, this last assumption can be approximated by a fraction
pq of the n host nests are replaced by new nests (with new random solutions). For a
maximization problem, the quality or fitness of a solution can simply be proportional
to the value of the objective function. Other forms of fitness can be defined in a
similar way to the fitness function in genetic algorithms.

For the implementation point of view, we can use the following simple represen-
tations that each egg in a nest represents a solution, and each cuckoo can lay only
one egg (thus representing one solution), the aim is to use the new and potentially
better solutions (cuckoos) to replace a not-so-good solution in the nests. Obviously,
this algorithm can be extended to the more complicated case where each nest has
multiple eggs representing a set of solutions, or representing multiobjectives [24]].

For this present tutorial, we will use the simplest approach where each nest has
only a single egg. In this case, there is no distinction between egg, nest or cuckoo,
as each nest corresponds to one egg which also represents one cuckoo.

Based on these three rules, the basic steps of the Cuckoo Search (CS) can be
summarized as the pseudo code shown in Fig.

This algorithm uses a balanced combination of a local random walk and the
global explorative random walk, controlled by a switching parameter p,. The lo-
cal random walk can be written as

N =X+ 5@ H(pa—€)® (¥) — X)), ©)

where xtj and x are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, € is a random number drawn from a uniform
distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights

A =X+ al(s,A), (10)

where AT(A)sin(mA/2) 1
L(s,2) = ()MM/)17 (s> 50 > 0). (11)
T s +A
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Cuckoo Search via Lévy Flights

Objective function f(x), x = (x1,...,xg)T
Generate initial population of n host nests x;
while (1t <MaxGeneration) or (stop criterion)
Get a cuckoo randomly/generate a solution by Lévy flights
and then evaluate its quality/fitness F;
Choose a nest among n (say, j) randomly
if (F;>Fj)
Replace j by the new solution
end
Abandon a fraction (p,) of worse nests & generate new solutions
Keep best solutions (or nests with quality solutions)
Rank the solutions and find the current best
end while
Postprocess results and visualization

Fig. 2 Pseudo code of the Cuckoo Search (CS).

A vectorized implementation can be obtained from this link herdl.
The Lévy flight essentially provides a random walk whose random step length is
drawn from a Lévy distribution

Lévy ~ EE (0<A<2), (12)
which has an infinite variance with an infinite mean. Here the steps essentially form
a random walk process with a power-law step-length distribution with a heavy tail.
Some of the new solutions should be generated by Lévy walk around the best so-
lution obtained so far, this will speed up the local search. However, a substantial
fraction of the new solutions should be generated by far field randomization and
whose locations should be far enough from the current best solution, this will make
sure that the system will not be trapped in a local optimum.

The advantages of CS may be related to the characteristics in the algorithm.
Firstly, CS is a population-based algorithm, in a way similar to GA and PSO, but it
uses some sort of elitism and/or selection similar to that used in genetic algorithms
and harmony search. Secondly, the randomization in CS is more efficient, as its step
length distribution is heavy-tailed, and any step size (whether large or small) is pos-
sible. Thirdly, the number of parameters in CS to be tuned is fewer than GA and
PSO, and thus it is potentially more generic to adapt to a wider class of optimiza-
tion problems. In addition, each nest can have many eggs and thus represent a set
of solutions, CS can thus be extended to the type of meta-population algorithms, or
even hyper-heuristic algorithms.

! http://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-
algorithm
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2.4 Choice of Parameters

We have carried out a parametric study by varying the number of host nests (or
the population size n), the probability p, and other parameters. We have used n =
5,10,15, 20, 30, 40,50, 100, 150, 250,500 and p, = 0, 0.01, 0.05,0.1, 0.15,0.2,
0.25, 0.3,0.4,0.5. From our simulations, we found that n = 15 to 40, p, = 0.25
to 0.5 and A =1 to 1.5 are sufficient for most optimization problems. In addition,
the step size scaling factor o should be linked with the upper limits/bounds U, and
lower bounds L;, in the following empirical way

o =0.01(U,— L), (13)

which makes that the steps are not too aggressive (jumping out of the feasible do-
main), thus ensuring most newly-generated solutions in the right search regions.
Here U, and L, are d-dimensional vectors with the same dimensions as the solution
vector.

Results and analysis also imply that the convergence rate, to some extent, is not
sensitive to the parameters used. This means that the fine adjustment is not needed
for any given problems.

2.5 How to Do Lévy Flights

Broadly speaking, Lévy flights are a random walk whose step length is drawn from
the Lévy distribution, often in terms of a simple power-law formula L(s) ~ |s|~!~P
where 0 < 8 <2 is an index. Mathematically speaking, a simple version of Lévy
distribution can be defined as

Y Y 1
\/27‘; exp[i 2(5‘7”)] §— 3/29 0 < Au’ <s§ <o
L(s.y.1) = (o) (14)

0 otherwise,

where ¢ > 0 is a minimum step and 7 is a scale parameter. Clearly, as s — oo, we
have

1
mmmw¢;ﬂf (15)

This is a special case of the generalized Lévy distribution.
In general, Lévy distribution should be defined in terms of Fourier transform

F(k) = exp[—alkl’], 0<p<2, (16)

where « is a scale parameter. The inverse of this integral is not easy, as it does not
have analytical form, except for a few special cases.
For the case of B = 2, we have

F (k) = exp[—ak?], (17
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whose inverse Fourier transform corresponds to a Gaussian distribution. Another
special case is B = 1, and we have

F(k) = exp[—ak]], (18)
which corresponds to a Cauchy distribution

1
PEEI= o (19

where U is the location parameter, while y controls the scale of this distribution.
For the general case, the inverse integral

L(s) = 71[/000(:05(]“) exp|—ot|k|P]dk, (20)

can be estimated only when s is large. We have

o B I'(B)sin(zp/2)
L(s) — 5|18 , 5§00, 21
Here I'(z) is the Gamma function
I'(z)= / e dr. (22)
0

In the case when z = n is an integer, we have I'(n) = (n— 1)!.

Lévy flights are more efficient than Brownian random walks in exploring un-
known, large-scale search space. There are many reasons to explain this efficiency,
and one of them is due to the fact that the variance of Lévy flights

o)~ P, 1<p<2, (23)

increases much faster than the linear relationship (i.e., 6>(¢) ~ t) of Brownian ran-
dom walks. It is worth pointing out that a power-law distribution is often linked to
some scale-free characteristics, and Lévy flights can thus show self-similarity and
fractal behavior in the flight patterns. Here 3 is exactly the parameter A used earlier.

From the implementation point of view, the generation of random numbers with
Lévy flights consists of two steps: the choice of a random direction and the genera-
tion of steps which obey the chosen Lévy distribution. The generation of a direction
should be drawn from a uniform distribution, while the generation of steps is quite
tricky. There are a few ways of achieving this, but one of the most efficient and yet
straightforward ways is to use the so-called Mantegna algorithm for a symmetric
Lévy stable distribution [8]]. Here ‘symmetric’ means that the steps can be positive
and negative.

A random variable U and its probability distribution can be called stable if a
linear combination of its two identical copies (or U; and U,) obeys the same distri-
bution. That is, aU; 4+ bU, has the same distribution as cU + d where a,b > 0 and
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c,d € R.If d =0, it is called strictly stable. Gaussian, Cauchy and Lévy distributions
are all stable distributions.
In Mantegna’s algorithm, the step length s can be calculated by

u

N (24)
where « and v are drawn from normal distributions. That is
u~N(0,02), 03)
and
v~ N(0,02), 06)
where I'(1+B)sin(zB/2) /B
u:{F[(1+/3)/z]/32(B—1)/2} ;o oy=1 27)

This distribution (for s) obeys the expected Lévy distribution for |s| > |so| where s
is the smallest step. In principle, |sg| > 0, but in reality so can be taken as a sensible
value such as so = 0.1 to 1.

Studies show that Lévy flights can maximize the efficiency of resource searches
in uncertain environments. In fact, Lévy flights have been observed among foraging
patterns of albatrosses and fruit flies, and spider monkeys. In addition, Lévy flights
have many applications. Many physical phenomena such as the diffusion of fluores-
cent molecules, cooling behavior and noise could show Lévy-flight characteristics
under the right conditions.

The literature on cuckoo search is expanding rapidly. There have been a lot of
attention and recent studies using cuckoo search with diverse range of applications
[7,[17, 26]]. Walton et al. improved the algorithm by formulating a modified cuckoo
search algorithm [17]], while Yang and Deb extended it to multiobjective optimiza-
tion problems [26]]. Durgun and Yildiz applied it to structural design optimization
[6]]. Interested readers can refer to more advanced literature 23]].

At present, metaheuristic algorithms are inspired by some specific features of
the successful biological systems such as social insects and birds. Though they are
highly successful, however, these algorithms still have room for improvement. In
addition to the above open problems, a truly ‘intelligent’ algorithm is yet to be devel-
oped. By learning more and more from nature and by carrying out ever-increasingly
detailed, systematical studies, some truly ‘smart’ self-evolving algorithms will be
developed in the future so that such smart algorithms can automatically fine-tune
their behaviour to find the most efficient way of solving complex problems. As
an even bolder prediction, maybe, some hyper-level algorithm-constructing meta-
heuristics can be developed to automatically construct algorithms in an intelligent
manner in the not-too-far future.
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