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Abstract. The Manufacturing Cell Design Problem (MCDP) consists
in creating an optimal design of production plants, through the creation
of cells grouping machines that process parts of a given product. The goal
is to reduce costs and increase productivity by minimizing movements
and exchange of material between these cells. In this paper, we present
a Firefly Algorithm (FA) to tackle this problem. The FA is a recent
bio-inspired metaheuristic based on the mating behavior of fireflies that
employ its flashing capabilities to communicate with each other or at-
tract potential prey. We incorporate efficient transfer and discretization
methods in order to suitable handle the binary domains of the prob-
lem. Interesting experimental results are illustrated where several global
optimums are reached for a set of 90 well-known MCDP instances.

Keywords: Manufacturing Cell Design, Firefly Algorithm, Metaheuris-
tics, Optimization.

1 Introduction

Group Technology refers to the grouping of parts or products into families,
which are processed in a miniature factory called cell [19]. In order to increase
production efficiency, the underlying identity of components are exploited; such
as shapes, dimensions, routes of processes, etc. The awareness that many prob-
lems can be similar and grouped together allows for the search of a solution to
satisfy a set of problems in the same time; achieving time and effort optimiza-
tion. In this context, the Manufacturing Cell Design Problem (MCDP) involves
the creation of an optimal production plant design, through the organization of
machines that process parts of a given product in production cells. The goal is to
reduce costs and increase productivity by minimizing movements and exchange
of material between those cells.
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This paper focuses on solving the MCDP by using the Firefly Algorithm
(FA), which is a recent swarm-based metaheuristic inspired on the simulation of
characteristic behavior of the fireflies. Each firefly represents a possible solution
to the problem, which are randomly generated. Through the movement behavior,
the fireflies move towards the one they feel most attracted for, which allows to
update their current solution with a better one. Interesting experimental results
are illustrated where several global optimums are reached for a set of 90 well-
known MCDP instances.

This paper is organized as follows: In Section 2, we present the related work
followed by the mathematical formulation of the MCDP. Section 4 introduces
the FA and their basic behaviors. Finally, we present experimental results, con-
clusions and future work.

2 Related Work

The cell formation problem has been subject of considerable research, where
the production flow analysis proposed by Burbidge’s in 1963 [6], becomes one
of the first procedures to solve this problem. His method uses the machine-part
incidence matrix, and it is reorganized in a Block Diagonal Form (BDF) [22].
Analogous approaches try to identify groups of machines, most of them are
based on the machine-part incidence matrix. Various examples can be seen in
this context by using mathematical programming [1,3,4,14,15] and goal program-
ming [16,17]. Different metaheuristics have also been reported to solve different
instances of the MCDP, e.g. tabu search [2,13], particle swarm optimization [10],
and genetic algorithms (GA) [20]. Some hybridizations can also be found such
as GA with a branch and bound algorithm [5], local search and GA [12], and
simulated annealing with GA [21]. Finally, some approaches based on constraint
programming and SAT have also been reported [18].

3 Manufacturing Cell Design Problem

The Manufacturing Cell Design Problem (MCDP) involves processing a col-
lection of similar parts on a dedicated group of machines or manufacturing pro-
cesses. A manufacturing cell can be defined as an independent group of function-
ally dissimilar machines, located together on the floor, dedicated to the manu-
facture of a family of similar parts. Furthermore, a part family can be defined
as a collection of parts which are similar either because of geometric shape and
size or because similar processing steps are required to manufacture them [11].

3.1 Problem Statement

The goal of the MCDP is to minimize movements and exchange of material
between cells, in order to reduce production costs and increase productivity.
The idea is to represent the requirements of machine parts processing through
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a matrix called machine-part. The main goal of this matrix is the grouping
of machines for forming sets of machines and workpieces, so the number of
transport of parts through the cells is minimized. This reorganization is intended
to minimize the total number of movements between cells and the variation of
load inside of them, which results in the formulation of two new matrices called
machine-cell and part-cell. A rigorous mathematical formulation of the problem
of grouping machine-part is given by the optimization model depicted in the
following [18]. Let:

• M , be the number of machines.
• P , be the number of parts.
• C, be the number of cells.
• i, be the index of machines (i = 1, 2, ...,M).
• j, be the index of parts (i = 1, 2, ..., P ).
• k, be the index of cells (i = 1, 2, ..., C).
• Mmax, be the maximum number of machines per cell.
• A = [aij ], be the binary machine-part incidence matrix, where:

aij =

{
1 if machine i process the part j
0 otherwise

(1)

• B = [bik], be the binary machine-cell incidence matrix, where:

bik =

{
1 if machine i belongs to cell k
0 otherwise

(2)

• C = [cjk], be the binary part-cell incidence matrix, where:

cjk =

{
1 if part j belongs to cell k
0 otherwise

(3)

The objective function models the minimization of the part movements among
cells as depicted in Eq. 4.

min

C∑
k=1

M∑
i=1

P∑
j=1

aijcjk(1− bik) (4)

This objective function is subjected to three constraints as depicted in the
following, where Eq. 5 states that each machine belongs to one and only one cell.
Eq. 6 guarantee that each part is assigned to one and only one cell, and Eq. 7
determines the maximum number of machines that a cell could has.

C∑
k=1

bik = 1,∀i (5)

C∑
k=1

cjk = 1,∀j (6)
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M∑
i=1

bik ≤Mmax,∀k (7)

4 Firefly Algorithm

The Firefly Algorithm (FA), introduced in [23], is a bio-inspired metaheuris-
tic based on the mating or flashing behavior of fireflies. There are about two
thousand firefly species, and most fireflies produce short and rhythmic flashes.
The flashing light is produced by a process of bioluminescence, and the true
functions of such signaling systems are still debating. However, two fundamental
functions of such flashes are to attract mating partners (communication) and to
attract potential prey.

By idealizing some of the flashing characteristics of fireflies, firefly-inspired
algorithm use the following three idealized rules [24]:

i. All fireflies are unisex so that one firefly will be attracted to other fireflies
regardless of their sex.

ii. Attractiveness is proportional to their brightness, thus for any two flashing
fireflies, the less brighter one will move towards the brighter one. The at-
tractiveness is proportional to the brightness and they both decrease as their
distance increases. If there is no brighter one than a particular firefly, it will
move randomly.

iii. The brightness of a firefly is determined by the value of the objective func-
tion. For a maximization problem, the brightness of each firefly is propor-
tional to the value of the objective function. In case of minimization problem,
brightness of each firefly is inversely proportional to the value of the objective
function.

4.1 Attractiveness

In the FA, the main form of attraction is described by a decreasing function,
which is proportional to the light intensity seen by adjacent fireflies. This is
expressed in the following general form [7]:

β(r) = β0 exp[−γr2] (8)

Where β0 is the attractiveness at r = 0 and γ is a absorption coefficient,
which controls the decrease of the light intensity.

4.2 Distance

The distance between any two fireflies p and q at positions xp and xq respec-
tively, can be defined as a Cartesian distance as follows [7]:
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rpq =

√√√√ d∑
s=1

(xsp − xsq)2 (9)

Where xsp is the sth component of the spatial coordinate of the pth firefly
and d is the is the number of dimensions.

4.3 Movement

The movement of a firefly p, when attracted to another more attractive
(brighter) firefly q, is determined by [7]:

xt+1
p = xtp + β(r)(xtq − xtp) + α(rand− 1

2
) (10)

Where xt+1
p is the firefly position of the next generation. The first term in

the equation is the current position of a firefly xp, the second term denotes a
firefly’s attractiveness and the last term is used for the random movement if
there are not any brighter firefly. The randomness parameter is represented by
α and rand is a random number generated uniformly distributed between 0 and
1.

4.4 Binarization

When the firefly p moves toward firefly q, the position in that dimension of
the firefly p is changed from a binary number to a real number. Therefore, the
real number will be altered by the following transfer function, which limits the
value of this position between 0 and 1 [9]:

T (xsp) = | tanh(xsp)| (11)

Then, the position of the firefly p in the sth dimension is updated using the
following discretization method:

xsnew =

{
1 if rand ≤ T (xsp)
0 otherwise

(12)

4.5 Binary Firefly Algorithm

Based on the three rules that idealize the natural behavior of fireflies, the
basic steps for FA can be summarized as the pseudo-code shown in Algorithm
1.
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Algorithm 1 Binary Firefly Algorithm

1: Initialize algorithm’s parameters:
− Number of fireflies (n),
− Maximum number of generations (MaxGen),
− β0, γ, α.

2: Generate initial population of fireflies xi, (i = 1, 2, ..., n).
3: Light intensity of firefly Ii at xi is determined by value of
objective function in Equation (4).

4: while (t < MaxGen) do
5: for (p = 1 : n) do
6: for (q = p+ 1 : n) do
7: if (Iq > Ip) then
8: Move firefly i towards firefly j according to Equation (10).

Obtain attractiveness in Equation (8), which varies with distance
r according to Equation (9).

9: The obtained values are binarized by Equation (11) and (12).
10: end if
11: Evaluate new solutions and update light intensity.
12: end for
13: end for
14: Rank the fireflies and find the current best value.
15: end while
16: Post-process results and visualization.

5 Experimental Results

The FA, as well as the MCDP, was encoded in Java and executed in a 2.40
GHz Intel Core i7 3630QM processor with 12 GB RAM machine running Win-
dows 8.1. The algorithm performance was evaluated in an experimental way,
following the execution of 90 instances of the MCDP taken from [4] (10 prob-
lems using different Mmax and C values). Parameter setting for the implemented
FA is based on the work done on [8] and [24], which is the following: β0 = 1;
γ = 1; α = 0.2; n = 25; y MaxGen = 50. Values obtained after the experimental
phase are summarized in Tables 1 and 2, where ‘O’ denotes the global optimum
given in [4], ‘F’ the best value obtained by the proposed FA, ‘A’ the average
of obtained optimums, and ‘RPD’ the Relative Percentage Deviation, which is
computed as follows:

RDP =
(Z − Zopt)

Zopt
× 100

where Zopt is the best known optimum value and Z is the best optimum value
reached by FA.

The results exhibit that the proposed approach is able to reach the global
optimum for all the 90 tested instances. Analysis of the ‘A’ column in both tables
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reveal that only 11 of 90 problems obtained results that differ from the global
optimum, however, such a difference turns out to be minimal. Fig. 1 shows the
behavior of FA when seeking the current best value for problem 1, whose pa-
rameters are: Mmax = 9 and C = 2. Thanks to the FA’s operating mode, a rapid
convergence to the optimal value is obtained, because the current best value is
minimized in different fireflies in a same generation. In contrast, when working
with C = 3, the current best value decreases less abruptly, which can be seen
in Fig. 2, whose parameters for problem 6 are: Mmax = 7 y C = 3. Despite
of differences when dealing with C = 2 or C = 3, the optimum is reached in
most cases before 50 generations, demonstrating the efficiency of the proposed
approach.

Table 1: Experimental Results I.

C = 2
P Mmax = 8 Mmax = 9 Mmax = 10 Mmax = 11 Mmax = 12

O F A RPD (%) O F A RPD (%) O F A RPD (%) O F A RPD (%) O F A RPD (%)
1 11 11 11.4 0.00 11 11 11 0.00 11 11 11 0.00 11 11 11 0.00 11 11 11 0.00
2 7 7 7.6 0.00 6 6 6 0.00 4 4 4 0.00 3 3 3 0.00 3 3 3 0.00
3 4 4 4 0.00 4 4 4 0.00 4 4 4 0.00 3 3 3 0.00 1 1 1 0.00
4 14 14 14 0.00 13 13 13 0.00 13 13 13 0.00 13 13 13 0.00 13 13 13 0.00
5 9 9 9 0.00 6 6 6 0.00 6 6 6 0.00 5 5 5 0.00 4 4 4 0.00
6 5 5 5 0.00 3 3 3 0.00 3 3 3 0.00 3 3 3 0.00 2 2 2 0.00
7 7 7 7 0.00 4 4 4 0.00 4 4 4 0.00 4 4 4 0.00 4 4 4 0.00
8 13 13 13.6 0.00 10 10 10 0.00 8 8 8.1 0.00 5 5 5 0.00 5 5 5 0.00
9 8 8 8 0.00 8 8 8 0.00 8 8 8 0.00 5 5 5 0.00 5 5 5.3 0.00
10 8 8 8.1 0.00 5 5 5 0.00 5 5 5 0.00 5 5 5 0.00 5 5 5 0.00

Table 2: Experimental Results II.

C = 3
P Mmax = 6 Mmax = 7 Mmax = 8 Mmax = 9

O F A RPD (%) O F A RPD (%) O F A RPD (%) O F A RPD (%)
1 27 27 27.8 0.00 18 18 18.6 0.00 11 11 11 0.00 11 11 11 0.00
2 7 7 7 0.00 6 6 6 0.00 6 6 6 0.00 6 6 6 0.00
3 9 9 9 0.00 4 4 4 0.00 4 4 4 0.00 4 4 4 0.00
4 27 27 27 0.00 18 18 18 0.00 14 14 14 0.00 13 13 13 0.00
5 11 11 11 0.00 8 8 8 0.00 8 8 8 0.00 6 6 6.1 0.00
6 6 6 6 0.00 4 4 4 0.00 4 4 4 0.00 3 3 3 0.00
7 11 11 11.1 0.00 5 5 5 0.00 5 5 5 0.00 4 4 4 0.00
8 14 14 14 0.00 11 11 11 0.00 11 11 11 0.00 10 10 10 0.00
9 12 12 12 0.00 12 12 12 0.00 8 8 8 0.00 8 8 8 0.00
10 10 10 10.2 0.00 8 8 8 0.00 8 8 8 0.00 5 5 5 0.00

6 Conclusion and future work

In this paper we have presented a new firefly algorithm for solving MCDPs.
The metaheuristic is quite simple to implement and can be adapted to binary
domains by using specific transfer function and discretization methods. The
proposed FA is able to reach 90 of the 90 known global optimums, in which
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Fig. 1: Performing graph of the FA with C = 2.

Fig. 2: Performing graph of the FA with C = 3.

runtime per problem turned out to be less than 5 minutes. The results have
also exhibited the rapid convergence and robustness of the proposed algorithm
which is able to reach reasonable good average global optimums. Indeed, only
11 of 90 problems obtained average values that differ from the global optimum.
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As future work, we plan to experiment with additional modern metaheuristic
and to provide a larger comparison of modern techniques to solve MCDPs. The
integration of adaptive parameter setting to the presented approach would be
another direction of research to follow as well.
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