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6 Escuela de Ingenieŕıa Industrial, Universidad Diego Portales, Santiago, Chile
{ricardo.soto,broderick.crawford}@ucv.cl

carlos.castillo.m@mail.pucv.cl,fernando.paredes@udp.cl

Abstract. Manufacturing plants are commonly organized in cells con-
taining machines that process different parts of a given product. The
Manufacturing Cell Design Problem (MCDP) aims at efficiently organiz-
ing the machines into cells in order to increase productivity by minimiz-
ing the inter-cell moves of parts. In this paper, we present a new approach
based on Invasive Weed Optimization (IWO) for solving such a problem.
The IWO algorithm is a recent metaheuristic inspired on the coloniza-
tion behavior of the invasive weeds in agriculture. IWO represents the
solutions as weeds that grow and produce seeds to be randomly dispersed
over the search area. We additionally incorporate a binary neighbor op-
erator in order to efficiently handle the binary nature of the problem.
The experimental results demonstrate the efficiency of the proposed ap-
proach which is able to reach several global optimums for a set of 90
well-known MCDP instances.

Keywords: Manufacturing Cell Design, Invasive Weed Optimization,
Metaheuristics, Optimization.

1 Introduction

The Manufacturing Cell Design Problem (MCDP) is a group technology ap-
plication that consists in grouping components according to the next statement:
‘Similar things should be manufactured in the same way’ [10]. The MCDP is rep-
resented through functionally diverse machines, which are grouped in cells, each
of which is dedicated to the production of a part family, composed of different
parts with similar processing requirements [20]. Then, the goal of the MCDP
is to find machine-part’s associations with the least amount of part movements
between cells.

During the last decades, the MCDP has been tackled via approximate and
exact methods. On the one hand, approximate methods are focused on finding
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an approximate solution, which is not necessarily the global optimum. Meta-
heuristics such as genetic algorithms [18,5,13,3], tabu search [8,1], simulated
annealing [19] and particle swarm optimization [4] have intensively been used to
solve this problem. On the other hand, exact methods perform a complete search
within all possible solutions. Various experimental results performed by using
mathematical and constraint programming can be seen in [16] and in [2,15,14,6],
respectively.

Since then, the MCDP has been modeled as a set of machines and parts
grouped in a matrix called Machine-Part Incidence Matrix, which determines
when a part requires the service of a machine, or otherwise. All MCDP instances
are resolved by manipulating the incidence matrix in a manner such that the
grouping of all similar objects is possible [20]. In this paper, we solve the MCDP
by using the Invasive Weed Optimization (IWO) algorithm. The IWO algorithm
is a population-based metaheuristic, which simulates the colonization behavior
of the invasive weeds in agriculture [17]. It represents the solutions as a finite
number of weeds that grow and produce seeds depending on its fitness, that are
randomly dispersed over the search area. We illustrate promising results where
the global optimum is reached in several well-known MCDP instances.

This paper is organized as follows: Section 2 describes the mathematical
model for the MCDP. Section 3 presents the IWO algorithm. Section 4 illustrates
the experimental results, followed by conclusions and some lines of future work.

2 Manufacturing Cell Design Problem

The MCDP is defined as a production strategy which realizes a production
unit division of an organization. These units form groups or families of com-
ponents, also denominated as production cells [12]. The MCDP is considered
as a group technology application, in where the goals are the reduction of part
movements between the cells and leads to a lot of advantages such as reduc-
tion of material-handling times and cost, reduction of labors and paper works,
decrease of in-process inventories, shortening of production lead time, increase
of machine utilization, and others [21]. The MCDP follows the next statement:
‘Similar things should be manufactured in the same way’ [10]: similar parts either
by properties such as weight, manufacturing materials or required operations,
must belong to the same production unit.

First, the MCDP requires the organization of the involved elements in a rep-
resentative structure of the processing requirements that the production system
has. In this way, the incidence matrices are created in order to summarize the
necessary information. The first matrix is denominated machine-part matrix,
which determines through ones and zeros the necessary machines for the pro-
duction of the parts. In the matrix, the machines are represented as rows and
the parts are represented as columns [10]. Table 1 shows a machine-part ma-
trix example, which a row position with a number one means that the machine
processes the part associated to the respective column. Then, the goal is the
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grouping of machines that process similar parts, in the same way as the example
matrix showed in Table 2.

The MCDP is a model that must be satisfied for finding an optimum cell
organization, which is described through a rigorous mathematical formulation
of the problem as follows[16]:

Table 1: Machine-Part Matrix.

Part
Machine 1 2 3 4 5 6 7 8 9 10 11

A 1 1 1
B 1 1 1
C 1 1 1
D 1 1 1
E 1 1
F 1 1
G 1 1 1

Table 2: Processed Machine-Part Matrix.

Part
Machine 3 7 11 1 2 6 9 4 5 8 10

A 1 1 1
E 1 1
F 1
B 1 1 1
C 1 1 1
D 1 1 1
G 1 1 1

• M : number of machines.
• P : number of parts.
• C: number of cells.
• i: index of machines (i = 1, 2, ...,M).
• j: index of parts (i = 1, 2, ..., P ).
• k: index of cells (i = 1, 2, ..., C).
• Mmax: maximum number of machines per cell.
• A = [aij ]: is the binary machine×part incidence matrix, where:

aij =

{
1 if machine i processes the part j
0 otherwise

• B = [bik] is the binary machine×cell incidence matrix, where:

bik =

{
1 if machine i belongs to cell k
0 otherwise

• C = [cjk] is the binary part×cell incidence matrix, where:

cjk =

{
1 if part j belongs to cell k
0 otherwise
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The objective function models the minimization of part movements among
cells as depicted in Eq. 1.

Z =

C∑
k=1

M∑
i=1

P∑
j=1

aijcjk(1− bik) (1)

The objective function is subjected to the following constraints:

C∑
k=1

bik = 1 ∀i (2)

C∑
k=1

cjk = 1 ∀j (3)

M∑
i=1

bik ≤Mmax ∀k (4)

Eq. 2 defines that each machine belong to one and only one cell, Eq. 3 guar-
antees that each part is assigned to one and only one cell, and Eq. 4 determines
the maximum number of machines that a cell can contain.

3 Invasive Weed Optimization Algorithm

In [11], the authors introduced the Invasive Weed Optimization (IWO) Algo-
rithm, which is based on the colonization behavior of invasive weeds. Generally
speaking, a weed is a plant that grows where it is not desired. In agriculture this
term is used especially for plants whose growth habits are a threat to cultivated
plants. Weeds exhibit interesting properties as for instance robustness and adap-
tivity [17]. The metaheuristic goal is to find the right places for the growth and
reproduction of the weeds [7].

Therefore, each solution for the problem is represented by a weed [7]. IWO
algorithm generates a set of weeds, which is called Initial Population. The weed
with the best fitness among all others is known as Initial Solution. Therefore, each
weed generates sets of solutions called seeds, through reproduction behaviors.
When the IWO algorithm has generated a certain amount of weeds and seeds,
a ranking is elaborated and it is ordered according to the fitness of the weeds.
The worse ones are removed [17].

3.1 Initialization

The first step of IWO algorithm corresponds to the initialization. It is related
with the obtaining a set of possible solutions for the problem [9]. Then, a group of
weeds is generated and they are known as W, which contains an initial number
of solutions denominated by the previously defined parameter Pinit [7]. The
initialization in the IWO algorithm performs an analysis of the weeds, selecting
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the one with the lowest fitness. The selected weed will be the initial optimum
for the metaheuristic. The initialization phase is stated in Eq. 5:

W i ∈ (U(Xmin, Xmax)d) (1 ≤ i ≤ Pinit) (1 ≤ d ≤ D) (5)

The W i variable is the ith solution of the W group, i.e. W i ∈ W , and D
is known as the number of dimensions or variables of the problem. Xmin is the
minimum posible value that a dimension defined by d ∈ (1..D) can take. Further,
Xmax is the maximum posible value that the dimension can obtain.

3.2 Reproduction

The reproduction is the second step of the IWO algorithm, which refers to the
generation of new solutions, that are known as seeds, from the weeds previously
created in the initialization phase. The goal of the reproduction is the exploration
of the search space in order to improve the fitness values of the existing weeds.
For this purpose, the number of seeds Spnum is calculated for each weed according
to Eq. 6:

Spnum = Smin + (
F (W p)− Fworse
Fbest − Fworse

)(Smax − Smin) (1 ≤ P ≤ Pinit) (6)

The Smin and Smax parameters are the minimum and maximum number of
allowed seeds per weed [7]. F (W p) is the fitness value for the evaluated weed
W p, while Fworse and Fbest are the worst and the best fitness value within the
set of weeds W , respectively.

3.3 Spatial Dispersal

The next procedure is to create seeds for each weed p. The set of seeds Sp is
computed through the formula presented in Eq. 7:

(Srd)p = wpd +N (0, θG)D (1 ≤ r ≤ Spnum) (1 ≤ d ≤ D) (7)

whereby (Srd)p represents the dth dimension of the rth seed for the pth weed
of the W set. The wpd weed is moved in the neighborhood for the seed creation by
using a normal distribution (N (0, θG)D) with zero mean and varying standard
deviation represented by θG. The standard deviation calculation is performed
for each generation, represented by G, through the formula showed in Eq. 8:

θG = θfinal +
(Niter −G)θmod

(Niter)θmod
(θinit − θfinal) (8)

whereby Niter is the maximum number of iterations for the seed generation.
θinit and θfinal are previously defined parameters, and θmod denotes a non-linear
modulation index [7].
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3.4 Exclusive Competition

The last step of the IWO algorithm consist in a comparison between weeds
and seed according to the fitness value. This process occurs when the maximum
number of weeds and seeds, which is known as Pmax, is reached. Pmax is a pre-
viously defined parameter of the metaheuristic. After passing some iterations,
the number of weeds in a colony will reach its maximum level by fast reproduc-
tion, however, it is expected that the fitter weeds have been reproduced more
than the undesirable weeds. By reaching the maximum number of weeds in the
colony (Pmax), a mechanism for eliminating the weeds with poor fitness in the
generation is activated [9].

The elimination mechanism is known as Exclusive Competition and works as
follows: when the maximum number of weeds and seeds in a colony is reached,
they are ranked together, considering the seeds as weeds now. Next, the weeds
with lower fitness are eliminated to reach the maximum allowable population in
a colony. In this way, the weeds with better fitness survive and are allowed to
replicate. The population control mechanism is also applied to their offspring up
to the end of a given run, performing competitive exclusion [9].

3.5 Binary Invasive Weed Optimization Algorithm

In Eq. 7, the seed generation uses a normal distribution operator on its
respective weed. However, this function operates with a real domain, and the
MCDP has a binary domain BD = 0,1, (1 ≤ d ≤ D). Therefore, the function
needs an adaptation for binary values, which changes the normal distribution as
presented in Eq. 9:

(Srd)p = N (wpd, θG)D (1 ≤ r ≤ Spnum) (1 ≤ d ≤ D) (9)

The new function is known as Binary Neighbor Operator. As first step, the
number of those bits is determined in order to obtain a new different solution
represented for the seed. These numbers of bits are drawn from a normal distri-
bution to keep a senseful standard deviation θG. Based on the number of bits,
the probability of a single bit to be changed is computed in a second step. Fi-
nally, the given weed wp is copied to the seed S and all D bits of this seed S are
changed according to the pre-computed probability [7].

The Binary Neighbor Operator is defined through Algorithm 1, which shows
the criteria for the change of each bit that will generate the new seed. Finally,
the complete Binary IWO algorithm is also defined in Algorithm 2.

4 Experimental Results

We have performed a set of experiments based on 90 problem instances pre-
sented in [2]. The algorithm has been implemented in Java and launched on a
Intel Core i5 4210U processor with 6 GB RAM, running Windows 8.1 Pro. The
obtained results are illustrated in Table 3, where the ‘Opt’ column depicts the
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global optimum of the instance, ‘IWO’ the result reached by the proposed ap-
proach, and RPD represents Relative Percentage Deviation, which is computed

as: RDP =
(Z−Zopt)
Zopt

× 100; where Zopt is the best known optimum value and Z

is the best optimum value reached by IWO. The IWO algorithm was executed
using the following parameters: Generation Number (G) = 10; Iteration Num-
ber (Niter) = 500; Initial number of weeds (Pinit) = 20; Maximum number of
seeds (Pmax) = 10; Minimum number of seeds (Smin) = 10; Maximum number
of seeds (Smax) = 20; θinit = MC; θfinal = 1; and θmod = 3.

The results are quite promising, indeed the proposed IWO algorithm is able
to achieve 89 of 90 global optimums, keeping a low RPD value for the remaining
instance. Such results also exhibit the robustness of the approach, which is able to
reach good enough optimal values by keeping the same parameter configuration.
Figures 1 and 2 depict representative convergence charts, where we can observe
a fast convergence, achieving optimums before 500 iterations.

Algorithm 1 Binary Neighbor Operator

Require: : wp, θG, D
1: rbits = N+(0, θG)
2: pchange = rbits

D

3: S = wp

4: for d ∈ 1..D do
5: random = U(0, 1)
6: if random ≤ pchange then
7: Sd = ¬Sd

8: end if
9: end for

10: return S

Algorithm 2 Binary IWO algorithm

Require: : Pinit, Niter, θG, Smax, Smin

1: Generate initial population of weeds: W = Initialization(Pinit).
2: for (i = 1 : Niter) do
3: while (]W ≤ Pmax) do
4: for (p = 1 : ]W ) do
5: Sp

num = Reproduction(Smax, Smin, wp).
6: for (r = 1 : Sp

num) do
7: for (d = 1 : D) do
8: (Sr

d)p = Spatial Dispersal(wp
d, Niter, Sp

num, θG).
9: end for

10: end for
11: end for
12: end while
13: W = Exclusive Competition(W , S).
14: end for
15: return wbest
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Table 3: Experimental Results with C=2 and C=3

C=2
P Mmax = 8 Mmax = 9 Mmax = 10 Mmax = 11 Mmax = 12

Opt IWO RPD Opt IWO RPD Opt IWO RPD Opt IWO RPD Opt IWO RPD
1 11 11 0.00 11 11 0.00 11 11 0.00 11 11 0.00 11 11 0.00
2 7 7 0.00 6 6 0.00 4 4 0.00 3 3 0.00 3 3 0.00
3 4 4 0.00 4 4 0.00 4 4 0.00 3 3 0.00 1 1 0.00
4 14 14 0.00 13 13 0.00 13 13 0.00 13 13 0.00 13 13 0.00
5 9 9 0.00 6 6 0.00 6 6 0.00 5 5 0.00 4 4 0.00
6 5 5 0.00 3 3 0.00 3 3 0.00 3 3 0.00 2 2 0.00
7 7 7 0.00 4 4 0.00 4 4 0.00 4 4 0.00 4 4 0.00
8 13 13 0.00 10 10 0.00 8 8 0.00 5 5 0.00 5 5 0.00
9 8 8 0.00 8 8 0.00 8 8 0.00 5 5 0.00 5 5 0.00
10 8 8 0.00 5 5 0.00 5 5 0.00 5 5 0.00 5 5 0.00

C=3
P Mmax = 6 Mmax = 7 Mmax = 8 Mmax = 9

Opt IWO RPD Opt IWO RPD Opt IWO RPD Opt IWO RPD
1 27 27 0.00 18 18 0.00 11 11 0.00 11 11 0.00
2 7 7 0.00 6 6 0.00 6 7 16.7 6 6 0.00
3 9 9 0.00 4 4 0.00 4 4 0.00 4 4 0.00
4 27 27 0.00 18 18 0.00 14 14 0.00 13 13 0.00
5 11 11 0.00 8 8 0.00 8 8 0.00 6 6 0.00
6 6 6 0.00 4 4 0.00 4 4 0.00 3 3 0.00
7 11 11 0.00 5 5 0.00 5 5 0.00 4 4 0.00
8 14 14 0.00 11 11 0.00 11 11 0.00 10 10 0.00
9 12 12 0.00 12 12 0.00 8 8 0.00 8 8 0.00
10 10 10 0.00 8 8 0.00 8 8 0.00 5 5 0.00
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Fig. 1: Convergence charts for problem 1 with MMax=8 and C= 2.

5 Conclusions

In this paper, an invasive weed optimization algorithm for solving MCDPs
was presented. A binary neighbor operator is employed to efficiently handle
the binary nature of the problem. We have tested 90 well-known problem in-
stances considering different Mmax values and cell numbers. The results are
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Fig. 2: Convergence charts for problem 9 with MMax=10 and C= 2.

quite promising, where the proposed algorithm is capable to achieve 89 of 90
global optimums, keeping a low RPD value for the remaining instance. Such
results also exhibit the robustness of the approach, which is able to reach good
enough optimal values by keeping the same parameter configuration. As future
work, we plan to experiment with additional instances of the MCDP as well as
to implement new modern metaheuristics for solving this problem. The study of
adaptive and dynamic parameter setting to the presented approach would also
be another direction for future work.
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