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Abstract. Machine-Part Cell Formation Problems consists in organiz-
ing a plant as a set of cells, each one of them processing machines con-
taining the same type of parts. In recent years, different meta-heuristic
have been used to solve this problem. This paper addresses the problem
of Machine-Part Cell Formation by using the Migrating Birds Optimiza-
tion algorithm. The computational experiments show that in most of the
benchmark problems the results obtained from the proposed approach
are better than those obtained by other methods which are reported in
the literature.

Keywords: Cell formation problem, Nature-inspired algorithms, Mi-
grating birds optimization, Meta-heuristics

1 Introduction

Cellular Manufacturing is an organizational approach based on Group Technol-
ogy [17]. The purpose of the manufacturing cell is to divide the plant in a set
of cells. This identification process requires an effective approach to form part
families so that similarity within a part family can be optimized. According to
Selim et al. [23], clustering analysis is one of the most used methods for manufac-
turing cell design methods. The formation of cells is known to be NP-complete
and there is still the challenge of creating an efficient grouping method.

This paper focuses on solving machine-part cell formation problems. We use
a new nature-inspired meta-heuristic for combinatorial optimisation problems
called Migrating Birds Optimization (MBO) [7], that has successfully been used
to solve complex optimization problems such as: A hybrid flowshop scheduling
with total flowtime minimisation [19], Closed loop layout with exact distances
in flexible manufacturing systems [18], Obstacle neutralization problem [1].



We perform tests to resolve machine-part cell formation problem using MBO
and compared with Simulated Annealing (SA) [4,29] and Particle Swarm Op-
timization (PSO) [9,8], obtaining encouraging results. This paper is organized
as follows: Section 2 presents the related work. Section 3 describes and models
the machine-part cell formation problems; Section 4 gives an overview of MBO;
Section 5 presents and discuss the experimental results. Finally, we conclude and
give some directions for future work.

2 Related Work

The machine-part cell formation has emerged in the last two decades as innova-
tion for manufacturing strategy, which includes the advantages of serial produc-
tion. However, the independence between cells is difficult to produce in practice,
because some parts need to be processed in more than one machine. Therefore,
the objective of the machine-part cell formation problems, consists on grouping
machines and parts so as to minimize the flow between them.

Several investigations have been carried out for the problem. Burbidge [5]
has been one of the early researchers focused on the problem of machine-part
cell formation, in which he focused on the implementation of a new production
strategy focused on a reduction of flows and costs. Some methods are just trying
to find a family of parts, resulting in a partial solution; because the identification
of part families require machines to process all parts within the same cell. This
is modeled as a p-median problem or one can take advantage of the special
structure of clustering matrices and solve it by the rank energy algorithm [13].
In addition, there have been other relevant research to solve the machine-part
cell formation problem as a linear formulation of the problem [4], simultaneous
grouping of parts and machines in cellular manufacturing systems in an integer
programming approach [10] and a comparative study of similarity coefficients
and clustering algorithms in cellular manufacturing [22].

The problem of machine-part cell formation has had two complementary
lines of research. These are organized into two groups: Global optimization and
Approximate methods. The global optimization is to analyze the entire search
space, in order to guarantee a global optimum, as a result, the computational
cost in terms of memory and time consumed is much higher. In this group
we find research based on Linear programming [20], Goal programming [24],
Constraint programming [26,6] and Boolean satisfiability [25]. By contrast, the
approximate methods as meta-heuristic focus on finding an approximate solution
to a given amount of time; therefore, they can not guarantee a global optimum.
Duran et al. proposed to Particle Swarm Optimization algorithm enhanced with
a data mining technique for manufacturing cell design [9]. Simulated Annealing
Approaches for machine-part cell formation problems can be found in [4] and [29],
respectively. Other research using meta-heuristics are: Tabu seach [16,28], Ant
colony optimization [14], Genetic algorithms [27,12].



In this paper, we focus on solving the problem machine-part cell formation
using a metaheuristic called Migrating Birds Optimization, which to our knowl-
edge has not yet been reported.

3 Problem description

In this work, we model the machine-part cell formation problem by using an
array-based clustering approach. The main idea is to represent the processing
requirements of parts on machines through an incidence matrix named machine-
part (MxP ). This matrix holds binary domains and is denoted as A = aij ,
where:

aij =

{
1 if part j visits machine i for the processing;
0 otherwise.

Let us note that when a machine-part incidence matrix is contructed, cells or
part of families are easily visible. The main objective for machine-part cell for-
mation problems is the organization of set of machines and parts in groups so
that the number of intercell transportation is minimized. Fig. 1 presents an ex-
ample of diagonal block formation. This example corresponds to a machine-part
cell formation problem with the following parameters: 5 machines, 7 parts, an
incidence matrix aij (left matrix in Fig. 1), Mmax = 3 for 2 cells. Finally, assign-
ment matrices yik and zjk can be observed in Fig. 2, the optimum value obtained
is 0 and the new incidence matrix aij constructed from the results of yik and zjk,
has to be transformed into a solution matrix that has a block diagonal structure
(right matrix in Fig. 1).

P1 P2 P3 P4 P5 P6 P7 P1 P3 P7 P2 P4 P5 P6
M1 0 1 0 1 1 1 0 M2 1 1 0 0 0 0 0
M2 1 0 1 0 0 0 0 M3 1 1 1 0 0 0 0
M3 1 0 1 0 0 0 1 M5 1 0 1 0 0 0 0
M4 0 1 0 1 0 1 0 M1 0 0 0 1 1 1 1
M5 1 0 0 0 0 0 1 M4 0 0 0 1 1 0 1

Cell 1

Cell 2

Fig. 1. An example of cell formation.

A mathematical formulation of machine-part cell formation problem is given
by Boctor [4]. The optimization model is stated as follows, Let:

– M : the number of machines.
– P : the number of parts.



Cell 1 Cell 2 Cell 1 Cell 2
M1 0 1 P1 1 0
M2 1 0 P2 0 1
M3 1 0 P3 1 0
M4 0 1 P4 0 1
M5 1 0 P5 0 1

P6 0 1
P7 1 0

Fig. 2. Machine-Cell matrix yik and Part-Cell matrix zjk.

– C: the number of cells.

– i: the index of machines (i = 1, . . . ,M).

– j: the index of parts (j = 1, . . . , P ).

– k: the index of cells (k = 1, . . . , C).

– Mmax: the maximum number of machines per cell.

– A = aij : the M × P machine-part incidence matrix.

– yik: the M × C machine-cell matrix, where:

yik =

{
1 if machine i ∈ cell k;
0 otherwise;

– zjk: the P × C part-cell matrix, where:

zjk =

{
1 if part j ∈ cell k;
0 otherwise;

The problem is represented by the following mathematical model:

minimize

C∑
k=1

M∑
i=1

P∑
j=1

aijzjk(1− yik) (1)

Subject to:

C∑
k=1

yik = 1 ∀i (2)

C∑
k=1

zjk = 1 ∀j (3)

M∑
i=1

yik ≤Mmax ∀k, (4)



4 Migrating birds optimization

4.1 Natural migration of birds

The migrating birds optimization imitates the behaviour of bird migration in V-
shaped flight formation when season changes. There is a bird that is the leader
of the flock, which is followed by other birds, that are going after him on his
right and left hand, so that in the sky you can see the classic V-formation [3].
In this formation of migrating birds, some parameters like Wing-Tip Spacing
(WTS), angle of the V-formation (α), maximum width of the wing (w), depth
and wing span (b) are important to form an effective V-formation (show in Fig 4).
To determine the WTS some experiments [15,2] have been done, but finally the
best optimal value of WTS was obtained by Hummel and Beukenberg [11], which
it is formulated as WTSopt = −0.05b. In addition to the WTS, energy saving
flight can also be affected by the depth (the distance of a bird flying bird behind
leader position). The vortex sheet behind a fixed wing in constant flight, level
winds to form two vortices (show in Fig 3) concentrated in two lengths of rope of
the wing [21]. Therefore, the optimum depth can be formulated as Dopt = −2w.

Trailing tip vortex

Upwash               Downwash      Upwash

{}

Fig. 3. Regions of upwash and downwash created by trailing vortices.

4.2 Migrating birds optimization method

The migrating birds optimization (MBO) starts with a number of initial solutions
corresponding to birds in a V-formation. The initial population is composed of
n solutions that are randomly generated in the feasible solution space. Starting
with the first solution (corresponding to the leader bird) and progressing on the
lines towards the tails. Each solution try to be improved by its neighbor solu-
tions. If the best neighbor solution brings an improvement, the current solution
is replaced, otherwise, the leader stays unchanged. Also there is a benefit, which



α
WTS

Depth

Wing span (b)
Fig. 4. The V-formation.

is a mechanism for the solutions (birds) to share unused solutions. This mech-
anism consist in sharing with the unused neighbors the solutions that follow in
the flock. In other words, a solution evaluates a number of its own neighbors
and a number of neighbors of the previous solution. Subsequently, the solution
is replaced with the best set of neighbors and shared solutions. Once all the so-
lutions are improved by neighbor solutions, this procedure is repeated a number
of times m (tours) after which the leader solution becomes the last one, and one
of the other solutions with best value becomes leader and another loop starts.
The algorithm terminates when the number of iterations reaches the limit.

The conceptual similarity between the parameters of the algorithm of MBO
with the actual migration of birds in V-formation is studied in Duman et al. [7]
and is summarized in Table 1.

Table 1. Similarities of MBO meta-heuristic and V-shape natural migration of birds.

Parameter
of MBO

Parameter Description Similar concept in real
migration birds in V-
formation.

n The number of initial solutions of the flock. Birds in V-formation.

k The number of neighboring solutions gen-
erated for each initial solution.

The induced power required
which is inversely propor-
tional to the speed.

x The number of neighboring solutions
shared with the next solution.

Wing-Tip Spacing (WTS).

m The number of tours. The number of wing flaps
before a change occurs in the
leading bird.

K The number of iterations (total number of
generated neighbor solutions).

There is no conceptual rela-
tionship.



Below, first the notation used and then the pseudocode of the MBO algo-
rithm are given.

Algorithm 1: Pseudocode of Migrating Birds Optimization

1 Generate n initial solutions in a random manner and place them on an
hypothetical V-formation arbitrarily;

2 i = 0;
3 while (i < K) do
4 for j = 0 to j < m do
5 Try to improve the leading solution by generating and evaluating k

neighbors of it (for the implementation of machine-part cell
formation problem, a neighbor solution is obtained randomly by
choosing a machine and reassigning it to a randomly chosen cell);

6 i = i+ k;
7 for each solution Sr in the flock (except leader) do
8 Try to improve Sr by evaluating (k − x) neighbors of it and x

unused best neighbors from the solution in the front;
9 i = i+ (k − x);

10 end

11 end
12 Move the leader solution to the end and forward one of the solutions

following it to the leader position;

13 end
14 return the best solution in the flock;

5 Computational experiments

The MBO algorithms for machine-part cell formation was coded in Java SE-1.7
(Java SE 7, 1.7.0 55) and was run on a computer MacBook Pro (Retina, 13-inch,
Late 2013) with an Intel Core i5 Processor 2.4 GHz, 4 GB RAM 1600 MHz DDR3
and Video Card Intel Iris 1536 MB running OS X Yosemite version 10.10.4. We
have tested 90 problems (10 instances considerering 5 values of Mmax for C = 2
(Cells) and 10 intances considering 4 values of Mmax for C = 3, see Table 2
and Table 3).

Such 90 problems have been taken from Boctor’s experiments [4] in order to
compare it with previous work. To consider the parameters used by MBO, the
best values reported by Duman et al. [7], n = 51, k = 3,m = 10 and x = 1.
In addition to the K (iteration limit) setting a value of 1020 is assigned. Each
experiment was executed 100 times.

Table 2 and Table 3 contrasts the optimun value reached by using different
techniques for the 90 problems. Column 1 (Instance) corresponds to the identifier
assigned to each instance, column 2 (Boctor Problem) represents the identifier



Table 2. Experiments using C = 2: Optimum values for Migrating Birds Optimization
(MBO), Simulated Annealing (SA), and Particle Swarm Optimization (PSO).

Instance Boctor Mmax Optimum MBO SA PSO
Problem Value Optimum Average RPD% Optimum Optimum

1 1 8 11 11 12.81 0.00 11 11
2 1 9 11 11 11.42 0.00 11 11
3 1 10 11 11 11.27 0.00 11 11
4 1 11 11 11 11.65 0.00 11 11
5 1 12 11 11 12.95 0.00 11 11
6 2 8 7 7 7.82 0.00 7 7
7 2 9 6 6 7.3 0.00 6 6
8 2 10 4 4 5.43 0.00 10 5
9 2 11 3 3 3.86 0.00 4 4
10 2 12 3 3 3.73 0.00 3 4
11 3 8 4 4 5.22 0.00 5 5
12 3 9 4 4 5.29 0.00 4 4
13 3 10 4 4 5.19 0.00 4 5
14 3 11 3 3 3.95 0.00 4 4
15 3 12 1 1 2.62 0.00 4 3
16 4 8 14 14 15.1 0.00 14 15
17 4 9 13 13 13.37 0.00 13 13
18 4 10 13 13 13.47 0.00 13 13
19 4 11 13 13 13.68 0.00 13 13
20 4 12 13 13 13.65 0.00 13 13
21 5 8 9 9 9.92 0.00 9 10
22 5 9 6 6 7.1 0.00 6 8
23 5 10 6 6 6.98 0.00 6 6
24 5 11 5 5 5.9 0.00 7 5
25 5 12 4 4 5.06 0.00 4 5
26 6 8 5 5 6.69 0.00 5 5
27 6 9 3 3 3.77 0.00 3 3
28 6 10 3 3 4.08 0.00 5 3
29 6 11 3 3 4.03 0.00 3 4
30 6 12 2 2 2.74 0.00 3 4
31 7 8 7 7 7.81 0.00 7 7
32 7 9 4 4 6.02 0.00 4 5
33 7 10 4 4 5.26 0.00 4 5
34 7 11 4 4 5.32 0.00 4 5
35 7 12 4 4 5.24 0.00 4 5
36 8 8 13 13 13.7 0.00 13 14
37 8 9 10 10 11.66 0.00 20 11
38 8 10 8 8 9.19 0.00 15 10
39 8 11 5 5 6.22 0.00 11 6
40 8 12 5 5 7 0.00 7 6
41 9 8 8 8 9.9 0.00 13 9
42 9 9 8 8 9.85 0.00 8 8
43 9 10 8 8 9.64 0.00 8 8
44 9 11 5 5 6.77 0.00 8 5
45 9 12 5 5 6.91 0.00 8 8
46 10 8 8 8 8.95 0.00 8 9
47 10 9 5 5 6.31 0.00 5 8
48 10 10 5 5 6.29 0.00 5 7
49 10 11 5 5 5.84 0.00 5 7
50 10 12 5 5 6.41 0.00 5 6



Table 3. Experiments using C = 3: Optimum values for Migrating Birds Optimization
(MBO), Simulated Annealing (SA), and Particle Swarm Optimization (PSO).

Instance Boctor Mmax Optimum MBO SA PSO
Problem Value Optimum Average RPD% Optimum Optimum

51 1 6 27 27 29.44 0.00 28 -
52 1 7 18 18 20.77 0.00 18 -
53 1 8 11 11 13.22 0.00 11 -
54 1 9 11 11 12.23 0.00 11 -
55 2 6 7 7 9.08 0.00 7 -
56 2 7 6 6 7.42 0.00 6 -
57 2 8 6 6 7.01 0.00 7 -
58 2 9 6 6 7.33 0.00 6 -
59 3 6 9 9 10.08 0.00 12 -
60 3 7 4 4 6.67 0.00 8 -
61 3 8 4 4 5.51 0.00 8 -
62 3 9 4 4 4.84 0.00 4 -
63 4 6 27 27 28.03 0.00 27 -
64 4 7 18 18 20 0.00 18 -
65 4 8 14 14 15.71 0.00 14 -
66 4 9 13 13 14.42 0.00 13 -
67 5 6 11 11 12.29 0.00 11 -
68 5 7 8 8 9.55 0.00 9 -
69 5 8 8 8 9.53 0.00 9 -
70 5 9 6 6 7.82 0.00 8 -
71 6 6 6 6 6.97 0.00 8 -
72 6 7 4 4 5.72 0.00 5 -
73 6 8 4 4 5.39 0.00 5 -
74 6 9 3 3 4.64 0.00 4 -
75 7 6 11 11 13.21 0.00 11 -
76 7 7 5 5 6.37 0.00 5 -
77 7 8 5 5 7.1 0.00 5 -
78 7 9 4 4 6.35 0.00 5 -
79 8 6 14 14 15.11 0.00 14 -
80 8 7 11 11 12.71 0.00 11 -
81 8 8 11 11 13.23 0.00 11 -
82 8 9 10 10 11.69 0.00 10 -
83 9 6 12 12 14.39 0.00 12 -
84 9 7 12 12 13.42 0.00 12 -
85 9 8 8 8 10.73 0.00 13 -
86 9 9 8 8 9.68 0.00 8 -
87 10 6 10 10 13 0.00 12 -
88 10 7 8 8 9.32 0.00 14 -
89 10 8 8 8 9.14 0.00 8 -
90 10 9 5 5 7.45 0.00 8 -

Table 4. Number of optimal values reached.

Meta-heuristic C = 2 C = 3
M8 M9 M10 M11 M12 M6 M7 M8 M9

MBO 10 10 10 10 10 10 10 10 10
SA 8 9 7 5 6 6 6 5 6
PSO 4 6 5 4 2 - - - -
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Fig. 5. Convergence chart for Instance 55.

of the 10 Boctor problems [4], column 3 (Mmax) corresponds to the maximum
number of machines per cell, column 4 (Optimum Value) depicts the optimum
value for the given problem, column 5 (MBO-Optimum) the best value reached
by using Migrating Birds Optimization, column 6 (MBO-Average) the average
value of 100 executiones is depicted, column 7 (MBO-RPD%) represents the
difference between the best known optimun value and the best optimum value
reached by MBO in terms of percentage, column 8 (SA-Optimum) the best value
using Simulated Annealing [4,29], and column 9 (PSO-Optimum) the optimun
value using Particle Swarm Optimization [9,8].

As can be observed (see Table 2 and Table 3), the algorithm MBO able
to find an optimal solution to all problems and takes the first place. Table 4
summarizes the optimal amount that have reached MBO, SA and PSO for each
instance of Boctor’s problem. The experimental results shows that the proposed
MBO provides high quality solutions and good performance within 2 and 3
cells reaching RPD% = 0 for all tested instances. Fig. 5 shows the graph of
convergence for instance number 55 (Boctor Problem 2 solved by MBO with
C = 3, Mmax = 6 and Optimum value = 7). MBO has a rapid convergence (left
graph in Figure 5), this is because employing a mechanism neighboring solutions
shared with the next solution. Therefore, the algorithm MBO found the optimum
value for the instance 55 in the iteration number 2. For a more detailed view
of the convergence of the algorithm MBO, a modification of pseudocode MBO
was developed ignoring lines 6 and 9, subsequently increased iteration after line
12 was implemented. The results of these changes can be seen in Figure 5 (see
chart right) with the best evaluations of the objective function (see equation 1).

6 Conclusions

In this paper, a new approach for machine-part cell formation problem based on
migrating birds optimization has been proposed. The result obtained in the com-
putational experiences carried out show that proposed algorithm can generate
optimal. The comparisons between MBO and other metaheuristics indicates that



our algorithm is a better algorithm for solving machine-part cell formation prob-
lem. Indeed, the global optimum was reached in all instances. This is because
MBO has a rapid convergence, mainly because it uses a mechanism to share
neighboring solutions to the next solution. In future steps, the algorithm will be
applicate to a variety with larger problems. In addition, parameter optimization
and other approaches are also topics for future research.
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